本文整理匯總了Python中tensorflow.real方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.real方法的具體用法?Python tensorflow.real怎麽用?Python tensorflow.real使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.real方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def __init__(self, layer, mask, temperature, **kwargs):
"""Constructs flow.
Args:
layer: Two-headed masked network taking the inputs and returning a
real-valued Tensor of shape `[..., length, 2*vocab_size]`.
Alternatively, `layer` may return a Tensor of shape
`[..., length, vocab_size]` to be used as the location transform; the
scale transform will be hard-coded to 1.
mask: binary Tensor of shape `[length]` forming the bipartite assignment.
temperature: Positive value determining bias of gradient estimator.
**kwargs: kwargs of parent class.
"""
super(DiscreteBipartiteFlow, self).__init__(**kwargs)
self.layer = layer
self.mask = mask
self.temperature = temperature
示例2: one_hot_add
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def one_hot_add(inputs, shift):
"""Performs (inputs + shift) % vocab_size in the one-hot space.
Args:
inputs: Tensor of shape `[..., vocab_size]`. Typically a soft/hard one-hot
Tensor.
shift: Tensor of shape `[..., vocab_size]`. Typically a soft/hard one-hot
Tensor specifying how much to shift the corresponding one-hot vector in
inputs. Soft values perform a "weighted shift": for example,
shift=[0.2, 0.3, 0.5] performs a linear combination of 0.2 * shifting by
zero; 0.3 * shifting by one; and 0.5 * shifting by two.
Returns:
Tensor of same shape and dtype as inputs.
"""
# Compute circular 1-D convolution with shift as the kernel.
inputs = tf.cast(inputs, tf.complex64)
shift = tf.cast(shift, tf.complex64)
return tf.real(tf.signal.ifft(tf.signal.fft(inputs) * tf.signal.fft(shift)))
示例3: trace_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def trace_distance(rho, sigma):
r""" Trace distance :math:`\frac{1}{2}\tr \{ \sqrt{ (\rho - \sigma})^2 \}` between quantum states :math:`\rho` and :math:`\sigma`.
The inputs and outputs are tensors of dtype float, and all computations support automatic differentiation.
Args:
rho (tf.Tensor): 2-dimensional Hermitian matrix representing state :math:`\rho`.
sigma (tf.Tensor): 2-dimensional Hermitian matrix of the same dimensions and dtype as rho,
representing state :math:`\sigma`.
Returns:
tf.Tensor: Returns the scalar trace distance.
"""
if rho.shape != sigma.shape:
raise ValueError("Cannot compute the trace distance if inputs have"
" different shapes {} and {}".format(rho.shape, sigma.shape))
diff = rho - sigma
eig = tf.self_adjoint_eigvals(diff)
abs_eig = tf.abs(eig)
return 0.5*tf.real(tf.reduce_sum(abs_eig))
示例4: expectation
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def expectation(rho, operator):
r""" Expectation value :math:`\tr\{ \rho O\}` of operator :math:`O` with respect to the quantum state :math:`\rho`.
The inputs and outputs are tensors of dtype float, and all computations support automatic differentiation.
Args:
rho (tf.Tensor) : 2-dimensional Hermitian tensor representing state :math:`\rho`.
operator (tf.Tensor): 2-dimensional Hermitian tensor of the same dimensions and dtype as rho.
Returns:
tf.Tensor: Returns the scalar expectation value.
"""
if rho.shape != operator.shape:
raise ValueError("Cannot compute expectation value if rho and operator have"
" different shapes {} and {}".format(rho.shape, operator.shape))
if len(rho.shape) != 2:
raise ValueError("Expectation loss expects a 2-d array representing a density matrix.")
exp = tf.real(tf.trace(tf.matmul(rho, operator)))
return exp
示例5: _compareGradient
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def _compareGradient(self, x):
# x[:, 0] is real, x[:, 1] is imag. We combine real and imag into
# complex numbers. Then, we extract real and imag parts and
# computes the squared sum. This is obviously the same as sum(real
# * real) + sum(imag * imag). We just want to make sure the
# gradient function is checked.
with self.test_session():
inx = tf.convert_to_tensor(x)
real, imag = tf.split(1, 2, inx)
real, imag = tf.reshape(real, [-1]), tf.reshape(imag, [-1])
cplx = tf.complex(real, imag)
cplx = tf.conj(cplx)
loss = tf.reduce_sum(
tf.square(tf.real(cplx))) + tf.reduce_sum(
tf.square(tf.imag(cplx)))
epsilon = 1e-3
jacob_t, jacob_n = tf.test.compute_gradient(inx,
list(x.shape),
loss,
[1],
x_init_value=x,
delta=epsilon)
self.assertAllClose(jacob_t, jacob_n, rtol=epsilon, atol=epsilon)
示例6: compute_log_mel_spectrograms
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def compute_log_mel_spectrograms(stfts, hparams):
# power_spectrograms = tf.real(stfts * tf.conj(stfts))
magnitude_spectrograms = tf.abs(stfts)
num_spectrogram_bins = magnitude_spectrograms.shape[-1].value
linear_to_mel_weight_matrix = signal.linear_to_mel_weight_matrix(
hparams.num_mel_bins, num_spectrogram_bins, hparams.sample_rate, hparams.mel_lower_edge_hz,
hparams.mel_upper_edge_hz)
mel_spectrograms = tf.tensordot(
magnitude_spectrograms, linear_to_mel_weight_matrix, 1)
# Note: Shape inference for `tf.tensordot` does not currently handle this case.
mel_spectrograms.set_shape(magnitude_spectrograms.shape[:-1].concatenate(
linear_to_mel_weight_matrix.shape[-1:]))
log_offset = 1e-6
log_mel_spectrograms = tf.log(mel_spectrograms + log_offset)
return log_mel_spectrograms
示例7: hdrplus_merge
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def hdrplus_merge(imgs, N, c, sig):
ccast_tf = lambda x : tf.complex(x, tf.zeros_like(x))
# imgs is [batch, h, w, ch]
rcw = tf.expand_dims(rcwindow(N), axis=-1)
imgs = imgs * rcw
imgs = tf.transpose(imgs, [0, 3, 1, 2])
imgs_f = tf.fft2d(ccast_tf(imgs))
imgs_f = tf.transpose(imgs_f, [0, 2, 3, 1])
Dz2 = tf.square(tf.abs(imgs_f[...,0:1] - imgs_f))
Az = Dz2 / (Dz2 + c*sig**2)
filt0 = 1 + tf.expand_dims(tf.reduce_sum(Az[...,1:], axis=-1), axis=-1)
filts = tf.concat([filt0, 1 - Az[...,1:]], axis=-1)
output_f = tf.reduce_mean(imgs_f * ccast_tf(filts), axis=-1)
output_f = tf.real(tf.ifft2d(output_f))
return output_f
示例8: griffin_lim
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def griffin_lim(spec,
frame_length,
frame_step,
num_fft,
num_iters = 1):
#num_iters = 20):
#num_iters = 10):
invert_spec = lambda spec : tf.contrib.signal.inverse_stft(spec, frame_length, frame_step, num_fft)
spec_mag = tf.cast(tf.abs(spec), dtype=tf.complex64)
best = tf.identity(spec)
for i in range(num_iters):
samples = invert_spec(best)
est = tf.contrib.signal.stft(samples, frame_length, frame_step, num_fft, pad_end = False) # (1, T, n_fft/2+1)
phase = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64)
best = spec_mag * phase
X_t = invert_spec(best)
y = tf.real(X_t)
y = cast_float(y)
return y
示例9: compute_fft
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def compute_fft(x, direction="C2C", inverse=False):
if direction == 'C2R':
inverse = True
x_shape = x.get_shape().as_list()
h, w = x_shape[-2], x_shape[-3]
x_complex = tf.complex(x[..., 0], x[..., 1])
if direction == 'C2R':
out = tf.real(tf.ifft2d(x_complex)) * h * w
return out
else:
if inverse:
out = stack_real_imag(tf.ifft2d(x_complex)) * h * w
else:
out = stack_real_imag(tf.fft2d(x_complex))
return out
示例10: spectrogram2wav
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def spectrogram2wav(spectrogram, n_iter=hparams.griffin_lim_iters, n_fft=(hparams.num_freq - 1) * 2,
win_length=int(hparams.frame_length_ms / 1000 * hparams.sample_rate),
hop_length=int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)):
'''Converts spectrogram into a waveform using Griffin-lim's raw.
'''
def invert_spectrogram(spectrogram):
'''
spectrogram: [t, f]
'''
spectrogram = tf.expand_dims(spectrogram, 0)
inversed = tf.contrib.signal.inverse_stft(spectrogram, win_length, hop_length, n_fft)
squeezed = tf.squeeze(inversed, 0)
return squeezed
spectrogram = tf.transpose(spectrogram)
spectrogram = tf.cast(spectrogram, dtype=tf.complex64) # [t, f]
X_best = tf.identity(spectrogram)
for i in range(n_iter):
X_t = invert_spectrogram(X_best)
est = tf.contrib.signal.stft(X_t, win_length, hop_length, n_fft, pad_end=False) # (1, T, n_fft/2+1)
phase = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64) # [t, f]
X_best = spectrogram * phase # [t, t]
X_t = invert_spectrogram(X_best)
y = tf.real(X_t)
return y
示例11: test_Real
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def test_Real(self):
t = tf.real(tf.Variable(self.random(3, 4, complex=True)))
self.check(t)
#
# Fourier transform ops
#
示例12: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def call(self, inputx):
assert inputx.dtype in [tf.complex64, tf.complex128], 'inputx is not complex.'
return tf.concat([tf.real(inputx), tf.imag(inputx)], -1)
示例13: one_bp_iteration
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def one_bp_iteration(self, xe_v2c_pre_iter, H_sumC_to_V, H_sumV_to_C, xe_0):
xe_tanh = tf.tanh(tf.to_double(tf.truediv(xe_v2c_pre_iter, [2.0])))
xe_tanh = tf.to_float(xe_tanh)
xe_tanh_temp = tf.sign(xe_tanh)
xe_sum_log_img = tf.matmul(H_sumC_to_V, tf.multiply(tf.truediv((1 - xe_tanh_temp), [2.0]), [3.1415926]))
xe_sum_log_real = tf.matmul(H_sumC_to_V, tf.log(1e-8 + tf.abs(xe_tanh)))
xe_sum_log_complex = tf.complex(xe_sum_log_real, xe_sum_log_img)
xe_product = tf.real(tf.exp(xe_sum_log_complex))
xe_product_temp = tf.multiply(tf.sign(xe_product), -2e-7)
xe_pd_modified = tf.add(xe_product, xe_product_temp)
xe_v_sumc = tf.multiply(self.atanh(xe_pd_modified), [2.0])
xe_c_sumv = tf.add(xe_0, tf.matmul(H_sumV_to_C, xe_v_sumc))
return xe_v_sumc, xe_c_sumv
示例14: _compareMake
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def _compareMake(self, real, imag, use_gpu):
np_ans = real + (1j) * imag
with self.test_session(use_gpu=use_gpu):
real = tf.convert_to_tensor(real)
imag = tf.convert_to_tensor(imag)
tf_ans = tf.complex(real, imag)
out = tf_ans.eval()
self.assertAllEqual(np_ans, out)
self.assertShapeEqual(np_ans, tf_ans)
示例15: testMake
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import real [as 別名]
def testMake(self):
real = (np.arange(-3, 3) / 4.).reshape([1, 3, 2]).astype(np.float32)
imag = (np.arange(-3, 3) / 5.).reshape([1, 3, 2]).astype(np.float32)
for use_gpu in [False, True]:
self._compareMake(real, imag, use_gpu)
self._compareMake(real, 12.0, use_gpu)
self._compareMake(23.0, imag, use_gpu)