本文整理匯總了Python中tensorflow.random_shuffle方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.random_shuffle方法的具體用法?Python tensorflow.random_shuffle怎麽用?Python tensorflow.random_shuffle使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.random_shuffle方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scheduled_sample
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def scheduled_sample(ground_truth_x, generated_x, batch_size, num_ground_truth):
"""Sample batch with specified mix of ground truth and generated data points.
Args:
ground_truth_x: tensor of ground-truth data points.
generated_x: tensor of generated data points.
batch_size: batch size
num_ground_truth: number of ground-truth examples to include in batch.
Returns:
New batch with num_ground_truth sampled from ground_truth_x and the rest
from generated_x.
"""
idx = tf.random_shuffle(tf.range(int(batch_size)))
ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
generated_idx = tf.gather(idx, tf.range(num_ground_truth, int(batch_size)))
ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
generated_examps = tf.gather(generated_x, generated_idx)
return tf.dynamic_stitch([ground_truth_idx, generated_idx],
[ground_truth_examps, generated_examps])
示例2: scheduled_sample
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def scheduled_sample(self,
ground_truth_x,
generated_x,
batch_size,
num_ground_truth):
"""Sample batch with specified mix of groundtruth and generated data points.
Args:
ground_truth_x: tensor of ground-truth data points.
generated_x: tensor of generated data points.
batch_size: batch size
num_ground_truth: number of ground-truth examples to include in batch.
Returns:
New batch with num_ground_truth sampled from ground_truth_x and the rest
from generated_x.
"""
idx = tf.random_shuffle(tf.range(batch_size))
ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
generated_idx = tf.gather(idx, tf.range(num_ground_truth, batch_size))
ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
generated_examps = tf.gather(generated_x, generated_idx)
return tf.dynamic_stitch([ground_truth_idx, generated_idx],
[ground_truth_examps, generated_examps])
示例3: aspect_ratio_jittering
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def aspect_ratio_jittering(img_tensor, gtboxes_and_label, aspect_ratio=(0.8, 1.5)):
ratio_list = tf.range(aspect_ratio[0], aspect_ratio[1], delta=0.025)
ratio = tf.random_shuffle(ratio_list)[0]
img_h, img_w = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1]
areas = img_h * img_w
areas = tf.cast(areas, tf.float32)
short_side = tf.sqrt(areas / ratio)
long_side = short_side * ratio
short_side = tf.cast(short_side, tf.int32)
long_side = tf.cast(long_side, tf.int32)
image, gtbox, new_h, new_w = tf.cond(tf.less(img_w, img_h),
true_fn=lambda: tf_resize_image(img_tensor, gtboxes_and_label, short_side,
long_side),
false_fn=lambda: tf_resize_image(img_tensor, gtboxes_and_label, long_side,
short_side))
return image, gtbox, new_h, new_w
示例4: rotate_img
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def rotate_img(img_tensor, gtboxes_and_label):
# thetas = tf.constant([-30, -60, -90, 30, 60, 90])
thetas = tf.range(-90, 90+16, delta=15)
# -90, -75, -60, -45, -30, -15, 0, 15, 30, 45, 60, 75, 90
theta = tf.random_shuffle(thetas)[0]
img_tensor, gtboxes_and_label = tf.py_func(rotate_img_np,
inp=[img_tensor, gtboxes_and_label, theta],
Tout=[tf.float32, tf.int32])
h, w, c = tf.shape(img_tensor)[0], tf.shape(img_tensor)[1], tf.shape(img_tensor)[2]
img_tensor = tf.reshape(img_tensor, [h, w, c])
gtboxes_and_label = tf.reshape(gtboxes_and_label, [-1, 9])
return img_tensor, gtboxes_and_label
示例5: read_from_disk
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def read_from_disk(self,queue):
index_t=queue[0]#tf.random_shuffle(self.input_list)[0]
index_min=tf.reshape(tf.where(tf.less_equal(self.node,index_t)),[-1])
node_min=self.node[index_min[-1]]
node_max=self.node[index_min[-1]+1]
interval_list=list(range(30,100))
interval=tf.random_shuffle(interval_list)[0]
index_d=[tf.cond(tf.greater(index_t-interval,node_min),lambda:index_t-interval,lambda:index_t+interval),tf.cond(tf.less(index_t+interval,node_max),lambda:index_t+interval,lambda:index_t-interval)]
index_d=tf.random_shuffle(index_d)
index_d=index_d[0]
constant_t=tf.read_file(self.img_list[index_t])
template=tf.image.decode_jpeg(constant_t, channels=3)
template=template[:,:,::-1]
constant_d=tf.read_file(self.img_list[index_d])
detection=tf.image.decode_jpeg(constant_d, channels=3)
detection=detection[:,:,::-1]
template_label=self.label_list[index_t]
detection_label=self.label_list[index_d]
template_p,template_label_p,_,_=self.crop_resize(template,template_label,1)
detection_p,detection_label_p,offset,ratio=self.crop_resize(detection,detection_label,2)
return template_p,template_label_p,detection_p,detection_label_p,offset,ratio,detection,detection_label,index_t,index_d
示例6: _random_tensor_gather
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def _random_tensor_gather(array, num_ind, name=None):
"""Samples random indices of an array (along the first dimension).
Args:
array: Tensor of shape `[batch_size, ...]`.
num_ind: int. Number of indices to sample.
name: `string`. (Default: None)
Returns:
A tensor of shape `[num_ind, ...]`.
"""
with tf.name_scope(name, "random_gather", [array]):
array = tf.convert_to_tensor(array)
total_size = array.shape.as_list()[0]
if total_size is None:
total_size = utils.get_shape(array)[0]
indices = tf.random_shuffle(tf.range(0, total_size))[:num_ind]
return tf.gather(array, indices, axis=0)
示例7: scheduled_sample
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def scheduled_sample(ground_truth_x, generated_x, batch_size, num_ground_truth):
"""Sample batch with specified mix of ground truth and generated data_files points.
Args:
ground_truth_x: tensor of ground-truth data_files points.
generated_x: tensor of generated data_files points.
batch_size: batch size
num_ground_truth: number of ground-truth examples to include in batch.
Returns:
New batch with num_ground_truth sampled from ground_truth_x and the rest
from generated_x.
"""
idx = tf.random_shuffle(tf.range(int(batch_size)))
ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
generated_idx = tf.gather(idx, tf.range(num_ground_truth, int(batch_size)))
ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
generated_examps = tf.gather(generated_x, generated_idx)
return tf.dynamic_stitch([ground_truth_idx, generated_idx],
[ground_truth_examps, generated_examps])
示例8: scheduled_sample
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def scheduled_sample(ground_truth_x, generated_x, batch_size, num_ground_truth):
"""Sample batch with specified mix of ground truth and generated data points.
Args:
ground_truth_x: tensor of ground-truth data points.
generated_x: tensor of generated data points.
batch_size: batch size
num_ground_truth: number of ground-truth examples to include in batch.
Returns:
New batch with num_ground_truth sampled from ground_truth_x and the rest
from generated_x.
"""
idx = tf.random_shuffle(tf.range(int(batch_size)))
ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
generated_idx = tf.gather(idx, tf.range(num_ground_truth, int(batch_size)))
ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
generated_examps = tf.gather(generated_x, generated_idx)
return tf.dynamic_stitch([ground_truth_idx, generated_idx],
[ground_truth_examps, generated_examps])
示例9: sample_k_fids_for_pid
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def sample_k_fids_for_pid(pid, all_fids, all_pids, batch_k):
""" Given a PID, select K FIDs of that specific PID. """
possible_fids = tf.boolean_mask(all_fids, tf.equal(all_pids, pid))
# The following simply uses a subset of K of the possible FIDs
# if more than, or exactly K are available. Otherwise, we first
# create a padded list of indices which contain a multiple of the
# original FID count such that all of them will be sampled equally likely.
count = tf.shape(possible_fids)[0]
padded_count = tf.cast(tf.ceil(batch_k / tf.cast(count, tf.float32)), tf.int32) * count
full_range = tf.mod(tf.range(padded_count), count)
# Sampling is always performed by shuffling and taking the first k.
shuffled = tf.random_shuffle(full_range)
selected_fids = tf.gather(possible_fids, shuffled[:batch_k])
return selected_fids, tf.fill([batch_k], pid)
示例10: _generate_rand
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def _generate_rand(min_factor, max_factor, step_size):
"""Gets a random value.
Args:
min_factor: Minimum value.
max_factor: Maximum value.
step_size: The step size from minimum to maximum value.
Returns:
A random value selected between minimum and maximum value.
Raises:
ValueError: min_factor has unexpected value.
"""
if min_factor < 0 or min_factor > max_factor:
raise ValueError("Unexpected value of min_factor.")
if min_factor == max_factor:
return tf.to_float(min_factor)
# When step_size = 0, we sample the value uniformly from [min, max).
if step_size == 0:
return tf.random_uniform([1],
minval=min_factor,
maxval=max_factor)
# When step_size != 0, we randomly select one discrete value from [min, max].
num_steps = int((max_factor - min_factor) / step_size + 1)
scale_factors = tf.lin_space(min_factor, max_factor, num_steps)
shuffled_scale_factors = tf.random_shuffle(scale_factors)
return shuffled_scale_factors[0]
示例11: sample_k_fids_for_pid
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def sample_k_fids_for_pid(pid, all_fids, all_pids, batch_k):
""" Given a PID, select K FIDs of that specific PID. """
possible_fids = tf.boolean_mask(all_fids, tf.equal(all_pids, pid))
# The following simply uses a subset of K of the possible FIDs
# if more than, or exactly K are available. Otherwise, we first
# create a padded list of indices which contain a multiple of the
# original FID count such that all of them will be sampled equally likely.
count = tf.shape(possible_fids)[0]
padded_count = tf.cast(tf.ceil(batch_k / count), tf.int32) * count
full_range = tf.mod(tf.range(padded_count), count)
# Sampling is always performed by shuffling and taking the first k.
shuffled = tf.random_shuffle(full_range)
selected_fids = tf.gather(possible_fids, shuffled[:batch_k])
return selected_fids, tf.fill([batch_k], pid)
示例12: parse_sentence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def parse_sentence(serialized):
"""Parses a tensorflow.SequenceExample into an caption.
Args:
serialized: A scalar string Tensor; a single serialized SequenceExample.
Returns:
key: The keywords in a sentence.
num_key: The number of keywords.
sentence: A description.
sentence_length: The length of the description.
"""
context, sequence = tf.parse_single_sequence_example(
serialized,
context_features={},
sequence_features={
'key': tf.FixedLenSequenceFeature([], dtype=tf.int64),
'sentence': tf.FixedLenSequenceFeature([], dtype=tf.int64),
})
key = tf.to_int32(sequence['key'])
key = tf.random_shuffle(key)
sentence = tf.to_int32(sequence['sentence'])
return key, tf.shape(key)[0], sentence, tf.shape(sentence)[0]
示例13: subsample_indicator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def subsample_indicator(indicator, num_samples):
"""Subsample indicator vector.
Given a boolean indicator vector with M elements set to `True`, the function
assigns all but `num_samples` of these previously `True` elements to
`False`. If `num_samples` is greater than M, the original indicator vector
is returned.
Args:
indicator: a 1-dimensional boolean tensor indicating which elements
are allowed to be sampled and which are not.
num_samples: int32 scalar tensor
Returns:
a boolean tensor with the same shape as input (indicator) tensor
"""
indices = tf.where(indicator)
indices = tf.random_shuffle(indices)
indices = tf.reshape(indices, [-1])
num_samples = tf.minimum(tf.size(indices), num_samples)
selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
selected_indicator = ops.indices_to_dense_vector(selected_indices,
tf.shape(indicator)[0])
return tf.equal(selected_indicator, 1)
示例14: _get_randomized_indices
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def _get_randomized_indices(self):
"""Generates randomized indices into a sequence of a specific length."""
indices = tf.range(0, self._dataset_info.sequence_size)
indices = tf.random_shuffle(indices)
indices = tf.slice(indices, begin=[0], size=[self._example_size])
return indices
示例15: HoMM4
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_shuffle [as 別名]
def HoMM4(xs,xt):
ind=tf.range(tf.cast(xs.shape[1],tf.int32))
ind=tf.random_shuffle(ind)
xs=tf.transpose(xs,[1,0])
xs=tf.gather(xs,ind)
xs = tf.transpose(xs, [1, 0])
xt = tf.transpose(xt, [1, 0])
xt = tf.gather(xt, ind)
xt = tf.transpose(xt, [1, 0])
return HoMM4_loss(xs[:,:30],xt[:,:30])+HoMM4_loss(xs[:,30:60],xt[:,30:60])+HoMM4_loss(xs[:,60:90],xt[:,60:90])