當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.random_normal方法代碼示例

本文整理匯總了Python中tensorflow.random_normal方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.random_normal方法的具體用法?Python tensorflow.random_normal怎麽用?Python tensorflow.random_normal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.random_normal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: set_input_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def set_input_shape(self, input_shape):
        batch_size, rows, cols, input_channels = input_shape
        kernel_shape = tuple(self.kernel_shape) + (input_channels,
                                                   self.output_channels)
        assert len(kernel_shape) == 4
        assert all(isinstance(e, int) for e in kernel_shape), kernel_shape
        init = tf.random_normal(kernel_shape, dtype=tf.float32)
        init = init / tf.sqrt(1e-7 + tf.reduce_sum(tf.square(init),
                                                   axis=(0, 1, 2)))
        self.kernels = tf.Variable(init)
        self.b = tf.Variable(
            np.zeros((self.output_channels,)).astype('float32'))
        input_shape = list(input_shape)
        input_shape[0] = 1
        dummy_batch = tf.zeros(input_shape)
        dummy_output = self.fprop(dummy_batch)
        output_shape = [int(e) for e in dummy_output.get_shape()]
        output_shape[0] = batch_size
        self.output_shape = tuple(output_shape) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:model.py

示例2: set_input_shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def set_input_shape(self, input_shape):
        batch_size, dim = input_shape
        self.input_shape = [batch_size, dim]
        self.output_shape = [batch_size, self.num_hid]
        if self.init_mode == "norm":
            init = tf.random_normal([dim, self.num_hid], dtype=tf.float32)
            init = init / tf.sqrt(1e-7 + tf.reduce_sum(tf.square(init), axis=0,
                                                       keep_dims=True))
            init = init * self.init_scale
        elif self.init_mode == "uniform_unit_scaling":
            scale = np.sqrt(3. / dim)
            init = tf.random_uniform([dim, self.num_hid], dtype=tf.float32,
                                     minval=-scale, maxval=scale)
        else:
            raise ValueError(self.init_mode)
        self.W = PV(init)
        if self.use_bias:
            self.b = PV((np.zeros((self.num_hid,))
                         + self.init_b).astype('float32')) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:picklable_model.py

示例3: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def __init__(self, batch_size, z_size, mean, logvar):
    """Create a diagonal gaussian distribution.

    Args:
      batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
      z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
      mean: The N-D mean of the distribution.
      logvar: The N-D log variance of the diagonal distribution.
    """
    size__xz = [None, z_size]
    self.mean = mean            # bxn already
    self.logvar = logvar        # bxn already
    self.noise = noise = tf.random_normal(tf.shape(logvar))
    self.sample = mean + tf.exp(0.5 * logvar) * noise
    mean.set_shape(size__xz)
    logvar.set_shape(size__xz)
    self.sample.set_shape(size__xz) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:distributions.py

示例4: testLinearShared

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def testLinearShared(self):
    # Create a linear map which is applied twice on different inputs
    # (i.e. the weights of the map are shared).
    linear_map = blocks_std.Linear(6)
    x1 = tf.random_normal(shape=[1, 5])
    x2 = tf.random_normal(shape=[1, 5])
    xs = x1 + x2

    # Apply the transform with the same weights.
    y1 = linear_map(x1)
    y2 = linear_map(x2)
    ys = linear_map(xs)

    with self.test_session() as sess:
      # Initialize all the variables of the graph.
      tf.global_variables_initializer().run()

      y1_res, y2_res, ys_res = sess.run([y1, y2, ys])
      self.assertAllClose(y1_res + y2_res, ys_res) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:blocks_std_test.py

示例5: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
                 scale = 0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initialize_weights()
        self.weights = network_weights

        # model
        self.x = tf.placeholder(tf.float32, [None, self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)),
                self.weights['w1']),
                self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])

        # cost
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
        self.optimizer = optimizer.minimize(self.cost)

        init = tf.global_variables_initializer()
        self.sess = tf.Session()
        self.sess.run(init) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:DenoisingAutoencoder.py

示例6: sample_action

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def sample_action(self, logits, sampling_dim,
                    act_dim, act_type, greedy=False):
    """Sample an action from a distribution."""
    if self.env_spec.is_discrete(act_type):
      if greedy:
        act = tf.argmax(logits, 1)
      else:
        act = tf.reshape(tf.multinomial(logits, 1), [-1])
    elif self.env_spec.is_box(act_type):
      means = logits[:, :sampling_dim / 2]
      std = logits[:, sampling_dim / 2:]
      if greedy:
        act = means
      else:
        batch_size = tf.shape(logits)[0]
        act = means + std * tf.random_normal([batch_size, act_dim])
    else:
      assert False

    return act 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:policy.py

示例7: sample_action

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def sample_action(self, policy_parameters):
        """
        constructs a symbolic operation for stochastically sampling from the policy
        distribution

        arguments:
            policy_parameters
                mean, log_std) of a Gaussian distribution over actions
                    sy_mean: (batch_size, self.ac_dim)
                    sy_logstd: (batch_size, self.ac_dim)

        returns:
            sy_sampled_ac:
                (batch_size, self.ac_dim)
        """
        sy_mean, sy_logstd = policy_parameters
        sy_sampled_ac = sy_mean + tf.exp(sy_logstd) * tf.random_normal(tf.shape(sy_mean), 0, 1)
        return sy_sampled_ac 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:20,代碼來源:train_policy.py

示例8: fc

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def fc(inputs, output_size, init_bias=0.0, activation_func=tf.nn.relu, stddev=0.01):
    input_shape = inputs.get_shape().as_list()
    if len(input_shape) == 4:
        fc_weights = tf.Variable(
            tf.random_normal([input_shape[1] * input_shape[2] * input_shape[3], output_size], dtype=tf.float32,
                             stddev=stddev),
            name='weights')
        inputs = tf.reshape(inputs, [-1, fc_weights.get_shape().as_list()[0]])
    else:
        fc_weights = tf.Variable(tf.random_normal([input_shape[-1], output_size], dtype=tf.float32, stddev=stddev),
                                 name='weights')

    fc_biases = tf.Variable(tf.constant(init_bias, shape=[output_size], dtype=tf.float32), name='biases')
    fc_layer = tf.matmul(inputs, fc_weights)
    fc_layer = tf.nn.bias_add(fc_layer, fc_biases)
    if activation_func:
        fc_layer = activation_func(fc_layer)
    return fc_layer 
開發者ID:jireh-father,項目名稱:tensorflow-alexnet,代碼行數:20,代碼來源:ops.py

示例9: testDmlLoss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def testDmlLoss(self, batch, height, width, num_mixtures, reduce_sum):
    channels = 3
    pred = tf.random_normal([batch, height, width, num_mixtures * 10])
    labels = tf.random_uniform([batch, height, width, channels],
                               minval=0, maxval=256, dtype=tf.int32)
    actual_loss_num, actual_loss_den = common_layers.dml_loss(
        pred=pred, labels=labels, reduce_sum=reduce_sum)
    actual_loss = actual_loss_num / actual_loss_den

    real_labels = common_layers.convert_rgb_to_symmetric_real(labels)
    expected_loss = common_layers.discretized_mix_logistic_loss(
        pred=pred, labels=real_labels) / channels
    if reduce_sum:
      expected_loss = tf.reduce_mean(expected_loss)

    with self.test_session() as sess:
      actual_loss_val, expected_loss_val = sess.run(
          [actual_loss, expected_loss])
    self.assertAllClose(actual_loss_val, expected_loss_val) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:common_layers_test.py

示例10: testCreateOutputTrainMode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def testCreateOutputTrainMode(self, likelihood, num_mixtures, depth):
    batch = 1
    height = 8
    width = 8
    channels = 3
    rows = height
    if likelihood == common_image_attention.DistributionType.CAT:
      cols = channels * width
    else:
      cols = width
    hparams = tf.contrib.training.HParams(
        hidden_size=2,
        likelihood=likelihood,
        mode=tf.estimator.ModeKeys.TRAIN,
        num_mixtures=num_mixtures,
    )
    decoder_output = tf.random_normal([batch, rows, cols, hparams.hidden_size])
    targets = tf.random_uniform([batch, height, width, channels],
                                minval=-1., maxval=1.)
    output = common_image_attention.create_output(
        decoder_output, rows, cols, targets, hparams)
    if hparams.likelihood == common_image_attention.DistributionType.CAT:
      self.assertEqual(output.shape, (batch, height, width, channels, depth))
    else:
      self.assertEqual(output.shape, (batch, height, width, depth)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:27,代碼來源:common_image_attention_test.py

示例11: vae

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def vae(x, name, z_size):
  """Simple variational autoencoder without discretization.

  Args:
    x: Input to the discretization bottleneck.
    name: Name for the bottleneck scope.
    z_size: Number of bits used to produce discrete code; discrete codes range
      from 1 to 2**z_size.

  Returns:
    Embedding function, latent, loss, mu and log_simga.
  """
  with tf.variable_scope(name):
    mu = tf.layers.dense(x, z_size, name="mu")
    log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
    shape = common_layers.shape_list(x)
    epsilon = tf.random_normal([shape[0], shape[1], 1, z_size])
    z = mu + tf.exp(log_sigma / 2) * epsilon
    kl = 0.5 * tf.reduce_mean(
        tf.exp(log_sigma) + tf.square(mu) - 1. - log_sigma, axis=-1)
    free_bits = z_size // 4
    kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
    return z, kl_loss, mu, log_sigma 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:25,代碼來源:discretization.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def __init__(self, ob_dim, ac_dim): #pylint: disable=W0613
        X = tf.placeholder(tf.float32, shape=[None, ob_dim*2+ac_dim*2+2]) # batch of observations
        vtarg_n = tf.placeholder(tf.float32, shape=[None], name='vtarg')
        wd_dict = {}
        h1 = tf.nn.elu(dense(X, 64, "h1", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        h2 = tf.nn.elu(dense(h1, 64, "h2", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict))
        vpred_n = dense(h2, 1, "hfinal", weight_init=U.normc_initializer(1.0), bias_init=0, weight_loss_dict=wd_dict)[:,0]
        sample_vpred_n = vpred_n + tf.random_normal(tf.shape(vpred_n))
        wd_loss = tf.get_collection("vf_losses", None)
        loss = tf.reduce_mean(tf.square(vpred_n - vtarg_n)) + tf.add_n(wd_loss)
        loss_sampled = tf.reduce_mean(tf.square(vpred_n - tf.stop_gradient(sample_vpred_n)))
        self._predict = U.function([X], vpred_n)
        optim = kfac.KfacOptimizer(learning_rate=0.001, cold_lr=0.001*(1-0.9), momentum=0.9, \
                                    clip_kl=0.3, epsilon=0.1, stats_decay=0.95, \
                                    async=1, kfac_update=2, cold_iter=50, \
                                    weight_decay_dict=wd_dict, max_grad_norm=None)
        vf_var_list = []
        for var in tf.trainable_variables():
            if "vf" in var.name:
                vf_var_list.append(var)

        update_op, self.q_runner = optim.minimize(loss, loss_sampled, var_list=vf_var_list)
        self.do_update = U.function([X, vtarg_n], update_op) #pylint: disable=E1101
        U.initialize() # Initialize uninitialized TF variables 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:26,代碼來源:value_functions.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def __init__(self, name, state_size, output_size):
        self.state_size = state_size
        self.output_size = output_size

        with tf.variable_scope(name):
            self.input = tf.placeholder(tf.float32, shape=[None, self.state_size])
            self.action = tf.placeholder(tf.float32, shape=[None, self.output_size])

            self.l1 = tf.layers.dense(inputs=self.input, units=128, activation=tf.nn.relu)
            self.l2 = tf.layers.dense(inputs=self.l1,    units=128, activation=tf.nn.relu)
            self.l3 = tf.layers.dense(inputs=self.l2,    units=128, activation=tf.nn.relu)

            self.mu = tf.layers.dense(inputs=self.l3,    units=self.output_size, activation=None)
            self.log_std = tf.get_variable(name='log_std', initializer= -0.5 * np.ones(self.output_size, dtype=np.float32))
            self.std = tf.exp(self.log_std)
            self.pi = self.mu + tf.random_normal(tf.shape(self.mu)) * self.std
            self.logp = gaussian_likelihood(self.action, self.mu, self.log_std)
            self.logp_pi = gaussian_likelihood(self.pi, self.mu, self.log_std)
    
            self.scope = tf.get_variable_scope().name 
開發者ID:RLOpensource,項目名稱:tensorflow_RL,代碼行數:22,代碼來源:continuous.py

示例14: test_generator_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def test_generator_graph(self):
    tf.set_random_seed(1234)
    # Check graph construction for a number of image size/depths and batch
    # sizes.
    for i, batch_size in zip(xrange(3, 7), xrange(3, 8)):
      tf.reset_default_graph()
      final_size = 2 ** i
      noise = tf.random_normal([batch_size, 64])
      image, end_points = dcgan.generator(
          noise,
          depth=32,
          final_size=final_size)

      self.assertAllEqual([batch_size, final_size, final_size, 3],
                          image.shape.as_list())

      expected_names = ['deconv%i' % j for j in xrange(1, i)] + ['logits']
      self.assertSetEqual(set(expected_names), set(end_points.keys()))

      # Check layer depths.
      for j in range(1, i):
        layer = end_points['deconv%i' % j]
        self.assertEqual(32 * 2**(i-j-1), layer.get_shape().as_list()[-1]) 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:25,代碼來源:dcgan_test.py

示例15: _test_tf_hvp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_normal [as 別名]
def _test_tf_hvp(func, optimized, tf):
  a = tf.random_normal(shape=(300,))
  v = tf.reshape(a, shape=(-1,))

  modes = ['forward', 'reverse']
  for mode1 in modes:
    for mode2 in modes:
      if mode1 == mode2 == 'forward':
        continue
      df = tangent.autodiff(
          func,
          mode=mode1,
          motion='joint',
          optimized=optimized,
          check_dims=False)
      ddf = tangent.autodiff(
          df, mode=mode2, motion='joint', optimized=optimized, check_dims=False)
      dx = ddf(a, tf.constant(1.0), v)
      # We just ensure it computes something in this case.
      assert dx.shape == a.shape 
開發者ID:google,項目名稱:tangent,代碼行數:22,代碼來源:test_hessian_vector_products.py


注:本文中的tensorflow.random_normal方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。