當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.random_crop方法代碼示例

本文整理匯總了Python中tensorflow.random_crop方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.random_crop方法的具體用法?Python tensorflow.random_crop怎麽用?Python tensorflow.random_crop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.random_crop方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: cifar_tf_preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def cifar_tf_preprocess(inp, random_crop=True, random_flip=True, whiten=True,
                        br_sat_con=False):
    image_size = 32
    image = inp
    if random_crop:
        image = tf.image.resize_image_with_crop_or_pad(inp, image_size + 4,
                                                       image_size + 4)
        image = tf.random_crop(image, [image_size, image_size, 3])
    if random_flip:
        image = tf.image.random_flip_left_right(image)
    # Brightness/saturation/constrast provides small gains .2%~.5% on cifar.
    if br_sat_con:
        image = tf.image.random_brightness(image, max_delta=63. / 255.)
        image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
        image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
    if whiten:
        image = tf.image.per_image_standardization(image)
    return image 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:utils_cifar.py

示例2: _train_preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def _train_preprocess(self, reshaped_image):
    # Image processing for training the network. Note the many random
    # distortions applied to the image.

    # Randomly crop a [height, width] section of the image.
    reshaped_image = tf.random_crop(reshaped_image, self.processed_size)

    # Randomly flip the image horizontally.
    reshaped_image = tf.image.random_flip_left_right(reshaped_image)

    # Because these operations are not commutative, consider randomizing
    # the order their operation.
    reshaped_image = tf.image.random_brightness(reshaped_image,
                                               max_delta=63)
    # Randomly changing contrast of the image
    reshaped_image = tf.image.random_contrast(reshaped_image,
                                             lower=0.2, upper=1.8)
    return reshaped_image 
開發者ID:arashno,項目名稱:tensorflow_multigpu_imagenet,代碼行數:20,代碼來源:data_loader.py

示例3: should_distort_images

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def should_distort_images(flip_left_right, random_crop, random_scale,
                          random_brightness):
  """Whether any distortions are enabled, from the input flags.

  Args:
    flip_left_right: Boolean whether to randomly mirror images horizontally.
    random_crop: Integer percentage setting the total margin used around the
    crop box.
    random_scale: Integer percentage of how much to vary the scale by.
    random_brightness: Integer range to randomly multiply the pixel values by.

  Returns:
    Boolean value indicating whether any distortions should be applied.
  """
  return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
          (random_brightness != 0)) 
開發者ID:ArunMichaelDsouza,項目名稱:tensorflow-image-detection,代碼行數:18,代碼來源:retrain.py

示例4: parse_tfrecord_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def parse_tfrecord_tf(record, res, rnd_crop):
    features = tf.parse_single_example(record, features={
        'shape': tf.FixedLenFeature([3], tf.int64),
        'data': tf.FixedLenFeature([], tf.string),
        'label': tf.FixedLenFeature([1], tf.int64)})
    # label is always 0 if uncondtional
    # to get CelebA attr, add 'attr': tf.FixedLenFeature([40], tf.int64)
    data, label, shape = features['data'], features['label'], features['shape']
    label = tf.cast(tf.reshape(label, shape=[]), dtype=tf.int32)
    img = tf.decode_raw(data, tf.uint8)
    if rnd_crop:
        # For LSUN Realnvp only - random crop
        img = tf.reshape(img, shape)
        img = tf.random_crop(img, [res, res, 3])
    img = tf.reshape(img, [res, res, 3])
    return img, label  # to get CelebA attr, also return attr 
開發者ID:openai,項目名稱:glow,代碼行數:18,代碼來源:get_data.py

示例5: patch_discriminator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def patch_discriminator(x, filters=64, filter_size=5, n=4,
                        name="patch_discrim"):
  """Patch descriminator."""
  with tf.variable_scope(name):
    x_shape = shape_list(x)
    spatial_dims = [x_shape[1] // 4, x_shape[2] // 4]
    x = tf.random_crop(x, [x_shape[0]] + spatial_dims + [x_shape[3]])
    for i in range(n):
      x = general_conv(
          x=x,
          num_filters=filters * 2**i,
          filter_size=filter_size,
          stride=2 if i != n - 1 else 1,
          stddev=0.02,
          padding="SAME",
          name="c%d" % i,
          do_norm="instance" if i != 0 else False,
          do_relu=i != n - 1,
          relufactor=0.2)
    x = tf.reduce_mean(x, [1, 2])
    return x 
開發者ID:yyht,項目名稱:BERT,代碼行數:23,代碼來源:common_layers.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def __init__(self, raw_cifar10data, sess, model):
        assert isinstance(raw_cifar10data, CIFAR10Data)
        self.image_size = 32

        # create augmentation computational graph
        self.x_input_placeholder = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
        padded = tf.map_fn(lambda img: tf.image.resize_image_with_crop_or_pad(
            img, self.image_size + 4, self.image_size + 4),
            self.x_input_placeholder)
        cropped = tf.map_fn(lambda img: tf.random_crop(img, [self.image_size,
                                                             self.image_size,
                                                             3]), padded)
        flipped = tf.map_fn(lambda img: tf.image.random_flip_left_right(img), cropped)
        self.augmented = flipped

        self.train_data = AugmentedDataSubset(raw_cifar10data.train_data, sess,
                                             self.x_input_placeholder,
                                              self.augmented)
        self.eval_data = AugmentedDataSubset(raw_cifar10data.eval_data, sess,
                                             self.x_input_placeholder,
                                             self.augmented)
        self.label_names = raw_cifar10data.label_names 
開發者ID:snu-mllab,項目名稱:parsimonious-blackbox-attack,代碼行數:24,代碼來源:cifar10_input.py

示例7: tf_preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def tf_preprocess(random_crop=True,
                    random_flip=True,
                    random_color=True,
                    whiten=False):
    image_size = 84
    inp = tf.placeholder(tf.float32, [image_size, image_size, 3])
    image = inp
    # image = tf.cast(inp, tf.float32)
    if random_crop:
      log.info("Apply random cropping")
      image = tf.image.resize_image_with_crop_or_pad(inp, image_size + 8,
                                                     image_size + 8)
      image = tf.random_crop(image, [image_size, image_size, 3])
    if random_flip:
      log.info("Apply random flipping")
      image = tf.image.random_flip_left_right(image)
    # Brightness/saturation/constrast provides small gains .2%~.5% on cifar.
    if random_color:
      image = tf.image.random_brightness(image, max_delta=63. / 255.)
      image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
      image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
    if whiten:
      log.info("Apply whitening")
      image = tf.image.per_image_whitening(image)
    return inp, image 
開發者ID:renmengye,項目名稱:inc-few-shot-attractor-public,代碼行數:27,代碼來源:mini_imagenet.py

示例8: random_crop_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def random_crop_image(img, size, offset=None):
  # adapted from code from tf.random_crop
  shape = tf.shape(img)
  #remove the assertion for now since it makes the queue filling slow for some reason
  #check = tf.Assert(
  #  tf.reduce_all(shape[:2] >= size),
  #  ["Need value.shape >= size, got ", shape, size])
  #with tf.control_dependencies([check]):
  #  img = tf.identity(img)
  limit = shape[:2] - size + 1
  dtype = tf.int32
  if offset is None:
    offset = tf.random_uniform(shape=(2,), dtype=dtype, maxval=dtype.max, seed=None) % limit
    offset = tf.stack([offset[0], offset[1], 0])
  size0 = size[0] if isinstance(size[0], int) else None
  size1 = size[1] if isinstance(size[1], int) else None
  size_im = tf.stack([size[0], size[1], img.get_shape().as_list()[2]])
  img_cropped = tf.slice(img, offset, size_im)
  out_shape_img = [size0, size1, img.get_shape()[2]]
  img_cropped.set_shape(out_shape_img)
  return img_cropped, offset 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:23,代碼來源:Util.py

示例9: preprocess_image

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def preprocess_image(image, is_training):
  """Preprocess a single image of layout [height, width, depth]."""
  if is_training:
    # Resize the image to add four extra pixels on each side.
    image = tf.image.resize_image_with_crop_or_pad(
        image, _HEIGHT + 8, _WIDTH + 8)

    # Randomly crop a [_HEIGHT, _WIDTH] section of the image.
    image = tf.random_crop(image, [_HEIGHT, _WIDTH, _DEPTH])

    # Randomly flip the image horizontally.
    image = tf.image.random_flip_left_right(image)

  # Subtract off the mean and divide by the variance of the pixels.
  image = tf.image.per_image_standardization(image)
  return image 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:18,代碼來源:cifar10_main.py

示例10: svhn_tf_preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def svhn_tf_preprocess(inp, random_crop=True):
    image_size = 32
    image = inp
    if random_crop:
        print("Apply random cropping")
        image = tf.image.resize_image_with_crop_or_pad(inp, image_size + 4,
                                                       image_size + 4)
        image = tf.random_crop(image, [image_size, image_size, 3])
    return inp, image 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:11,代碼來源:utils_svhn.py

示例11: preprocess_for_train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def preprocess_for_train(image,
                         output_height,
                         output_width,
                         padding=_PADDING):
  """Preprocesses the given image for training.

  Note that the actual resizing scale is sampled from
    [`resize_size_min`, `resize_size_max`].

  Args:
    image: A `Tensor` representing an image of arbitrary size.
    output_height: The height of the image after preprocessing.
    output_width: The width of the image after preprocessing.
    padding: The amound of padding before and after each dimension of the image.

  Returns:
    A preprocessed image.
  """
  tf.summary.image('image', tf.expand_dims(image, 0))

  # Transform the image to floats.
  image = tf.to_float(image)
  if padding > 0:
    image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]])
  # Randomly crop a [height, width] section of the image.
  distorted_image = tf.random_crop(image,
                                   [output_height, output_width, 3])

  # Randomly flip the image horizontally.
  distorted_image = tf.image.random_flip_left_right(distorted_image)

  tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0))

  # Because these operations are not commutative, consider randomizing
  # the order their operation.
  distorted_image = tf.image.random_brightness(distorted_image,
                                               max_delta=63)
  distorted_image = tf.image.random_contrast(distorted_image,
                                             lower=0.2, upper=1.8)
  # Subtract off the mean and divide by the variance of the pixels.
  return tf.image.per_image_standardization(distorted_image) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:43,代碼來源:cifarnet_preprocessing.py

示例12: preprocess

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def preprocess(self, image):
    """Preprocess a single image in [height, width, depth] layout."""
    if self.subset == 'train' and self.use_distortion:
      # Pad 4 pixels on each dimension of feature map, done in mini-batch
      image = tf.image.resize_image_with_crop_or_pad(image, 40, 40)
      image = tf.random_crop(image, [HEIGHT, WIDTH, DEPTH])
      image = tf.image.random_flip_left_right(image)
    return image 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:cifar10.py

示例13: decode_jpg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def decode_jpg(filename, directory, center=False, crop=None, flip=False, resize=None, ratio=False, filename_offset='',
               normalize='imagenet'):
    # Read image
    im_content = tf.read_file(directory + filename_offset + filename)
    example = tf.image.decode_jpeg(im_content, channels=3)
    # preprocessing
    example = tf.cast(example[:, :, ::-1], tf.float32)
    if normalize is 'imagenet':
        example = example - IMAGENET_MEAN
    elif normalize:
        example = example / 127.5 - 1.
    # cropping
    if crop:
        shape = tf.shape(example)
        if ratio:
            assert isinstance(crop, list)
            crop_h = crop[0]
            crop_w = crop[1]
        else:
            assert isinstance(crop, int)
            shortest = tf.cond(tf.less(shape[0], shape[1]), lambda: shape[0], lambda: shape[1])
            crop_h = tf.cond(tf.less_equal(shortest, tf.constant(crop)), lambda: shortest, lambda: tf.constant(crop))
            crop_w = crop_h
        if center:
            example = tf.image.resize_image_with_crop_or_pad(example, crop_h, crop_w)
        else:
            example = tf.random_crop(example, [crop_h, crop_w, 3])
    # resize
    if resize:
        assert isinstance(resize, (int, float))
        new_size = tf.stack([resize, resize])
        example = tf.image.resize_images(example, new_size)
    # random horizontal flip
    if flip:
        example = tf.image.random_flip_left_right(example)
    return tf.transpose(example, [2, 0, 1]) 
開發者ID:cs-chan,項目名稱:ArtGAN,代碼行數:38,代碼來源:tf_reader.py

示例14: image_augmentation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def image_augmentation(images, do_colors=False, crop_size=None):
  """Image augmentation: cropping, flipping, and color transforms."""
  if crop_size is None:
    crop_size = [299, 299]
  images = tf.random_crop(images, crop_size + [3])
  images = tf.image.random_flip_left_right(images)
  if do_colors:  # More augmentation, but might be slow.
    images = tf.image.random_brightness(images, max_delta=32. / 255.)
    images = tf.image.random_saturation(images, lower=0.5, upper=1.5)
    images = tf.image.random_hue(images, max_delta=0.2)
    images = tf.image.random_contrast(images, lower=0.5, upper=1.5)
  return images 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:14,代碼來源:image_utils.py

示例15: cifar_image_augmentation

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import random_crop [as 別名]
def cifar_image_augmentation(images):
  """Image augmentation suitable for CIFAR-10/100.

  As described in https://arxiv.org/pdf/1608.06993v3.pdf (page 5).

  Args:
    images: a Tensor.
  Returns:
    Tensor of the same shape as images.
  """
  images = tf.image.resize_image_with_crop_or_pad(images, 40, 40)
  images = tf.random_crop(images, [32, 32, 3])
  images = tf.image.random_flip_left_right(images)
  return images 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:16,代碼來源:image_utils.py


注:本文中的tensorflow.random_crop方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。