當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.quint8方法代碼示例

本文整理匯總了Python中tensorflow.quint8方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.quint8方法的具體用法?Python tensorflow.quint8怎麽用?Python tensorflow.quint8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.quint8方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: add_dequantize_result_node

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def add_dequantize_result_node(self, quantized_output_name,
                                 original_node_name, min_tensor_index=1):
    min_max_inputs = [
        "%s:%s" % (quantized_output_name, min_tensor_index),
        "%s:%s" % (quantized_output_name, (min_tensor_index + 1))]
    dequantize_name = original_node_name
    if self.should_merge_with_fake_quant_node():
      fake_quant_node = self.state.output_node_stack[-1][0]
      if original_node_name not in self.state.merged_with_fake_quant:
        min_max_inputs = [fake_quant_node.input[1], fake_quant_node.input[2]]
        self.state.merged_with_fake_quant[original_node_name] = True
      dequantize_name = fake_quant_node.name

    dequantize_node = create_node(
        "Dequantize", dequantize_name,
        [quantized_output_name, min_max_inputs[0], min_max_inputs[1]])
    set_attr_dtype(dequantize_node, "T", tf.quint8)
    set_attr_string(dequantize_node, "mode", b"MIN_FIRST")
    self.add_output_graph_node(dequantize_node) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:quantize_graph.py

示例2: eightbitize_mat_mul_node

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def eightbitize_mat_mul_node(self, original_node):
    """Replaces a MatMul node with the eight bit equivalent sub-graph."""
    quantized_mat_mul_name = original_node.name + "_eightbit_quantized_mat_mul"
    all_input_names = self.add_eightbit_prologue_nodes(original_node)
    quantized_mat_mul_node = create_node(
        "QuantizedMatMul", quantized_mat_mul_name,
        all_input_names)
    set_attr_dtype(quantized_mat_mul_node, "T1", tf.quint8)
    set_attr_dtype(quantized_mat_mul_node, "T2", tf.quint8)
    set_attr_dtype(quantized_mat_mul_node, "Toutput", tf.qint32)
    copy_attr(quantized_mat_mul_node, "transpose_a",
              original_node.attr["transpose_a"])
    copy_attr(quantized_mat_mul_node, "transpose_b",
              original_node.attr["transpose_b"])
    self.add_output_graph_node(quantized_mat_mul_node)
    quantize_down_name = self.add_quantize_down_nodes(original_node,
                                                      quantized_mat_mul_name)
    self.add_dequantize_result_node(quantize_down_name, original_node.name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:quantize_graph.py

示例3: eightbitize_reshape_node

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def eightbitize_reshape_node(self, original_node):
    """Replaces a Reshape node with the eight bit equivalent sub-graph.

    Args:
      original_node: Float node to be converted.

    Returns:
      Subgraph representing the quantized version of the original node.

    """
    namespace_prefix = original_node.name + "_eightbit"
    quantized_reshape_name = namespace_prefix + "_quantized_reshape"
    reshape_dims_name, reduction_dims_name = self.add_common_quantization_nodes(
        namespace_prefix)
    shape_input_name = original_node.input[1]
    quantize_input_name, min_input_name, max_input_name = (
        self.eightbitize_input_to_node(namespace_prefix, original_node.input[0],
                                       reshape_dims_name, reduction_dims_name))
    quantized_reshape_node = create_node(
        "QuantizedReshape", quantized_reshape_name,
        [quantize_input_name, shape_input_name, min_input_name, max_input_name])
    set_attr_dtype(quantized_reshape_node, "T", tf.quint8)
    self.add_output_graph_node(quantized_reshape_node)
    self.add_dequantize_result_node(quantized_reshape_name, original_node.name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:26,代碼來源:quantize_graph.py

示例4: args_check

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def args_check(cls, node, **kwargs):
    supported_dtype = [
        tf.bfloat16, tf.half, tf.float32, tf.float64, tf.uint8, tf.int8,
        tf.int16, tf.int32, tf.int64, tf.complex64, tf.quint8, tf.qint8,
        tf.qint32, tf.string, tf.bool, tf.complex128
    ]
    x = kwargs["tensor_dict"][node.inputs[0]]
    if x.dtype not in supported_dtype:
      exception.OP_UNSUPPORTED_EXCEPT(
          "Equal inputs in " + str(x.dtype) + " which", "Tensorflow") 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:12,代碼來源:equal.py

示例5: _testDequantizeOp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def _testDequantizeOp(self, inputs, min_range, max_range, dtype):
    with self.test_session():
      input_op = tf.constant(inputs, shape=[len(inputs)], dtype=dtype)
      dequantized = tf.dequantize(
          input_op, min_range, max_range)
      tf_ans = dequantized.eval()

    # TODO(vrv): Add support for DT_QINT32 quantization if needed.
    type_dict = {
        tf.quint8: np.uint8,
        tf.qint8: np.int8,
        tf.quint16: np.uint16,
        tf.qint16: np.int16
        }
    self.assertTrue(dtype in type_dict.keys())
    v_max = np.iinfo(type_dict[dtype]).max
    v_min = np.iinfo(type_dict[dtype]).min
    self.assertTrue(min_range >= v_min)
    self.assertTrue(max_range <= v_max)
    type_range = v_max - v_min
    if v_min < 0:
      half_range = (type_range + 1) / 2
    else:
      half_range = 0.0

    np_ans = ((inputs.astype(np.float32) + half_range) *
              (max_range - min_range) / type_range) + min_range
    self.assertAllClose(tf_ans, np_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:30,代碼來源:dequantize_op_test.py

示例6: testBasicQuint8

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def testBasicQuint8(self):
    self._testDequantizeOp(np.array([0, 128, 255]),
                           0.0, 6.0, tf.quint8)
    self._testDequantizeOp(np.array([0, 128, 255]),
                           0.0, 123.456, tf.quint8)
    self._testDequantizeOp(np.array([0, 4, 42, 108, 243]),
                           5.0, 200.2, tf.quint8) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:dequantize_op_test.py

示例7: testStringConversion

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def testStringConversion(self):
    self.assertIs(tf.float32, tf.as_dtype("float32"))
    self.assertIs(tf.float64, tf.as_dtype("float64"))
    self.assertIs(tf.int32, tf.as_dtype("int32"))
    self.assertIs(tf.uint8, tf.as_dtype("uint8"))
    self.assertIs(tf.uint16, tf.as_dtype("uint16"))
    self.assertIs(tf.int16, tf.as_dtype("int16"))
    self.assertIs(tf.int8, tf.as_dtype("int8"))
    self.assertIs(tf.string, tf.as_dtype("string"))
    self.assertIs(tf.complex64, tf.as_dtype("complex64"))
    self.assertIs(tf.complex128, tf.as_dtype("complex128"))
    self.assertIs(tf.int64, tf.as_dtype("int64"))
    self.assertIs(tf.bool, tf.as_dtype("bool"))
    self.assertIs(tf.qint8, tf.as_dtype("qint8"))
    self.assertIs(tf.quint8, tf.as_dtype("quint8"))
    self.assertIs(tf.qint32, tf.as_dtype("qint32"))
    self.assertIs(tf.bfloat16, tf.as_dtype("bfloat16"))
    self.assertIs(tf.float32_ref, tf.as_dtype("float32_ref"))
    self.assertIs(tf.float64_ref, tf.as_dtype("float64_ref"))
    self.assertIs(tf.int32_ref, tf.as_dtype("int32_ref"))
    self.assertIs(tf.uint8_ref, tf.as_dtype("uint8_ref"))
    self.assertIs(tf.int16_ref, tf.as_dtype("int16_ref"))
    self.assertIs(tf.int8_ref, tf.as_dtype("int8_ref"))
    self.assertIs(tf.string_ref, tf.as_dtype("string_ref"))
    self.assertIs(tf.complex64_ref, tf.as_dtype("complex64_ref"))
    self.assertIs(tf.complex128_ref, tf.as_dtype("complex128_ref"))
    self.assertIs(tf.int64_ref, tf.as_dtype("int64_ref"))
    self.assertIs(tf.bool_ref, tf.as_dtype("bool_ref"))
    self.assertIs(tf.qint8_ref, tf.as_dtype("qint8_ref"))
    self.assertIs(tf.quint8_ref, tf.as_dtype("quint8_ref"))
    self.assertIs(tf.qint32_ref, tf.as_dtype("qint32_ref"))
    self.assertIs(tf.bfloat16_ref, tf.as_dtype("bfloat16_ref"))
    with self.assertRaises(TypeError):
      tf.as_dtype("not_a_type") 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:36,代碼來源:dtypes_test.py

示例8: eightbitize_input_to_node

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def eightbitize_input_to_node(self, namespace_prefix, original_input_name,
                                reshape_dims_name, reduction_dims_name):
    """Takes one float input to an op, and converts it to quantized form."""
    unique_input_name = unique_node_name_from_input(original_input_name)
    reshape_input_name = namespace_prefix + "_reshape_" + unique_input_name
    min_input_name = namespace_prefix + "_min_" + unique_input_name
    max_input_name = namespace_prefix + "_max_" + unique_input_name
    quantize_input_name = namespace_prefix + "_quantize_" + unique_input_name
    reshape_input_node = create_node("Reshape", reshape_input_name,
                                     [original_input_name, reshape_dims_name])
    set_attr_dtype(reshape_input_node, "T", tf.float32)
    self.add_output_graph_node(reshape_input_node)
    min_input_node = create_node("Min", min_input_name, [reshape_input_name,
                                                         reduction_dims_name])
    set_attr_dtype(min_input_node, "T", tf.float32)
    set_attr_bool(min_input_node, "keep_dims", False)
    self.add_output_graph_node(min_input_node)
    max_input_node = create_node("Max", max_input_name, [reshape_input_name,
                                                         reduction_dims_name])
    set_attr_dtype(max_input_node, "T", tf.float32)
    set_attr_bool(max_input_node, "keep_dims", False)
    self.add_output_graph_node(max_input_node)
    quantize_input_node = create_node("QuantizeV2", quantize_input_name,
                                      [original_input_name, min_input_name,
                                       max_input_name])
    set_attr_dtype(quantize_input_node, "T", tf.quint8)
    set_attr_string(quantize_input_node, "mode", b"MIN_FIRST")
    self.add_output_graph_node(quantize_input_node)
    min_output_name = quantize_input_name + ":1"
    max_output_name = quantize_input_name + ":2"
    return quantize_input_name, min_output_name, max_output_name 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:33,代碼來源:quantize_graph.py

示例9: add_quantize_down_nodes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def add_quantize_down_nodes(self, original_node, quantized_output_name):
    quantized_outputs = [
        quantized_output_name, quantized_output_name + ":1",
        quantized_output_name + ":2"
    ]
    min_max_inputs = None
    if self.should_merge_with_fake_quant_node():
      # Use the inputs to the FakeQuantWithMinMaxVars node as the inputs to
      # Requantize.
      fake_quant_node = self.state.output_node_stack[-1][0]
      min_max_inputs = [fake_quant_node.input[1], fake_quant_node.input[2]]
      assert original_node.name not in self.state.merged_with_fake_quant
      self.state.merged_with_fake_quant[original_node.name] = True
    elif self.fallback_quantization_range:
      min_max_inputs = ["fallback_quantization_min_value:0",
                        "fallback_quantization_max_value:0"]
    else:
      # Add a RequantizationRange node for finding the min and max values.
      requant_range_node = create_node(
          "RequantizationRange", original_node.name + "_eightbit_requant_range",
          quantized_outputs)
      set_attr_dtype(requant_range_node, "Tinput", tf.qint32)
      self.add_output_graph_node(requant_range_node)
      min_max_inputs = [requant_range_node.name + ":0",
                        requant_range_node.name + ":1"]
    requantize_node = create_node(
        "Requantize", original_node.name + "_eightbit_requantize",
        quantized_outputs + min_max_inputs)
    set_attr_dtype(requantize_node, "Tinput", tf.qint32)
    set_attr_dtype(requantize_node, "out_type", tf.quint8)
    self.add_output_graph_node(requantize_node)
    return requantize_node.name 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:34,代碼來源:quantize_graph.py

示例10: eightbitize_bias_add_node

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def eightbitize_bias_add_node(self, original_node):
    """Replaces a BiasAdd node with the eight bit equivalent sub-graph."""
    quantized_bias_add_name = (original_node.name +
                               "_eightbit_quantized_bias_add")
    all_input_names = self.add_eightbit_prologue_nodes(original_node)
    quantized_bias_add_node = create_node(
        "QuantizedBiasAdd", quantized_bias_add_name,
        all_input_names)
    set_attr_dtype(quantized_bias_add_node, "T1", tf.quint8)
    set_attr_dtype(quantized_bias_add_node, "T2", tf.quint8)
    set_attr_dtype(quantized_bias_add_node, "out_type", tf.qint32)
    self.add_output_graph_node(quantized_bias_add_node)
    quantize_down_name = self.add_quantize_down_nodes(original_node,
                                                      quantized_bias_add_name)
    self.add_dequantize_result_node(quantize_down_name, original_node.name) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:17,代碼來源:quantize_graph.py

示例11: add_pool_function

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def add_pool_function(self, original_node, quantized_op_node):
    set_attr_dtype(quantized_op_node, "T", tf.quint8)
    copy_attr(quantized_op_node, "ksize", original_node.attr["ksize"])
    copy_attr(quantized_op_node, "strides", original_node.attr["strides"])
    copy_attr(quantized_op_node, "padding", original_node.attr["padding"]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:7,代碼來源:quantize_graph.py

示例12: add_relu_function

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def add_relu_function(self, unused_arg_node, quantized_op_node):
    set_attr_dtype(quantized_op_node, "Tinput", tf.quint8) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:4,代碼來源:quantize_graph.py

示例13: eightbitize_placeholder_node

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def eightbitize_placeholder_node(self, current_node):
    """Replaces a placeholder node with a quint8 placeholder node+dequantize."""
    name = current_node.name

    # Convert the placeholder into a quantized type.
    output_node = tf.NodeDef()
    output_node.CopyFrom(current_node)
    set_attr_dtype(output_node, "dtype", tf.quint8)
    output_node.name += "_original_input"
    self.add_output_graph_node(output_node)

    # Add a dequantize to convert back to float.
    dequantize_node = create_node(
        "Dequantize", name,
        [output_node.name, "quantized_input_min_value",
         "quantized_input_max_value"])
    set_attr_dtype(dequantize_node, "T", tf.quint8)
    set_attr_string(dequantize_node, "mode", b"MIN_FIRST")
    self.add_output_graph_node(dequantize_node)

    # For the descent over the graph to work, the dequantize node must be named
    # current_node.name.  However, for the feeding of the graph to work, the
    # placeholder must have the name current_node.name; so record a final set
    # of renames to apply after all processing has been done.
    self.final_node_renames[output_node.name] = name
    self.final_node_renames[dequantize_node.name] = name + "_dequantize" 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:quantize_graph.py

示例14: _RunTestsForQuantizedInputRange

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def _RunTestsForQuantizedInputRange(self, float_graph_def, input_map,
                                      output_names, input_range):
    if sys.version_info[0] == 3:
      # uint8->quint8 conversion for numpy is not working currently.
      return

    quantized_input_map = {}
    for k, v in input_map.items():
      arr = [
          int(round((n-input_range[0])*255/(input_range[1]-input_range[0])))
          for n in v.flat]
      arr = np.array(arr, np.uint8)
      arr = arr.reshape(v.shape)
      arr = arr.astype(tf.quint8.as_numpy_dtype)
      quantized_input_map[k] = arr
    output_tensors = [output_name + ":0" for output_name in output_names]
    float_results = run_graph_def(float_graph_def, input_map, output_tensors)

    # Quantize treating the input as quantized in range <input_range>.
    rewriter = quantize_graph.GraphRewriter(float_graph_def, "eightbit",
                                            input_range)
    graph_def = rewriter.rewrite(output_names)
    results = run_graph_def(graph_def, quantized_input_map, output_tensors)
    for expected, result in zip(float_results, results):
      assert are_tensors_near(expected, result, .5)
    ops = [node.op for node in graph_def.node]
    self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
    self.assertEqual(len(output_names), ops.count("Dequantize"))

    # Quantize without treating input as quantized.
    rewriter = quantize_graph.GraphRewriter(float_graph_def, "eightbit",
                                            quantized_input_range=None)
    graph_def = rewriter.rewrite(output_names)
    results = run_graph_def(graph_def, input_map, output_tensors)
    for expected, result in zip(float_results, results):
      assert are_tensors_near(expected, result, .5)
    ops = [node.op for node in graph_def.node]
    self.assertEqual(len(input_map),
                     ops.count("QuantizeV2") + ops.count("Quantize"))
    self.assertEqual(len(output_names), ops.count("Dequantize")) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:42,代碼來源:quantize_graph_test.py

示例15: inference

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import quint8 [as 別名]
def inference(self, npimg, resize_to_default=True, upsample_size=1.0):
        if npimg is None:
            raise Exception('The image is not valid. Please check your image exists.')

        if resize_to_default: #1.08155608177

            upsample_size = [int(self.target_size[1] / 8 * upsample_size), int(self.target_size[0] / 8 * upsample_size)]
        else:
            upsample_size = [int(npimg.shape[0] / 8 * upsample_size), int(npimg.shape[1] / 8 * upsample_size)]

        if self.tensor_image.dtype == tf.quint8:
            # quantize input image
            npimg = TfPoseEstimator._quantize_img(npimg)
            pass

        logger.debug('inference+ original shape=%dx%d' % (npimg.shape[1], npimg.shape[0]))
        img = npimg
        if resize_to_default:
            img = self._get_scaled_img(npimg, None)[0][0]
        peaks, heatMat_up, pafMat_up = self.persistent_sess.run(
            [self.tensor_peaks, self.tensor_heatMat_up, self.tensor_pafMat_up], feed_dict={
                self.tensor_image: [img], self.upsample_size: upsample_size
            })
        peaks = peaks[0]
        self.heatMat = heatMat_up[0]
        self.pafMat = pafMat_up[0]
        logger.debug('inference- heatMat=%dx%d pafMat=%dx%d' % (
        self.heatMat.shape[1], self.heatMat.shape[0], self.pafMat.shape[1], self.pafMat.shape[0]))

        t = time.time()
        humans = PoseEstimator.estimate_paf(peaks, self.heatMat, self.pafMat)
        logger.debug('estimate time=%.5f' % (time.time() - t))
        return humans 
開發者ID:NVIDIA-AI-IOT,項目名稱:Gesture-Recognition,代碼行數:35,代碼來源:estimator.py


注:本文中的tensorflow.quint8方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。