當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.qint8方法代碼示例

本文整理匯總了Python中tensorflow.qint8方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.qint8方法的具體用法?Python tensorflow.qint8怎麽用?Python tensorflow.qint8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.qint8方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: args_check

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def args_check(cls, node, **kwargs):
    supported_dtype = [
        tf.bfloat16, tf.half, tf.float32, tf.float64, tf.uint8, tf.int8,
        tf.int16, tf.int32, tf.int64, tf.complex64, tf.quint8, tf.qint8,
        tf.qint32, tf.string, tf.bool, tf.complex128
    ]
    x = kwargs["tensor_dict"][node.inputs[0]]
    if x.dtype not in supported_dtype:
      exception.OP_UNSUPPORTED_EXCEPT(
          "Equal inputs in " + str(x.dtype) + " which", "Tensorflow") 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:12,代碼來源:equal.py

示例2: _testDequantizeOp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def _testDequantizeOp(self, inputs, min_range, max_range, dtype):
    with self.test_session():
      input_op = tf.constant(inputs, shape=[len(inputs)], dtype=dtype)
      dequantized = tf.dequantize(
          input_op, min_range, max_range)
      tf_ans = dequantized.eval()

    # TODO(vrv): Add support for DT_QINT32 quantization if needed.
    type_dict = {
        tf.quint8: np.uint8,
        tf.qint8: np.int8,
        tf.quint16: np.uint16,
        tf.qint16: np.int16
        }
    self.assertTrue(dtype in type_dict.keys())
    v_max = np.iinfo(type_dict[dtype]).max
    v_min = np.iinfo(type_dict[dtype]).min
    self.assertTrue(min_range >= v_min)
    self.assertTrue(max_range <= v_max)
    type_range = v_max - v_min
    if v_min < 0:
      half_range = (type_range + 1) / 2
    else:
      half_range = 0.0

    np_ans = ((inputs.astype(np.float32) + half_range) *
              (max_range - min_range) / type_range) + min_range
    self.assertAllClose(tf_ans, np_ans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:30,代碼來源:dequantize_op_test.py

示例3: testBasicQint8

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def testBasicQint8(self):
    self._testDequantizeOp(np.array([-128, 0, 127]),
                           -1.0, 2.0, tf.qint8)
    self._testDequantizeOp(np.array([-2, 4, -17]),
                           -5.0, -3.0, tf.qint8)
    self._testDequantizeOp(np.array([0, -4, 42, -108]),
                           5.0, 40.0, tf.qint8) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:dequantize_op_test.py

示例4: testStringConversion

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def testStringConversion(self):
    self.assertIs(tf.float32, tf.as_dtype("float32"))
    self.assertIs(tf.float64, tf.as_dtype("float64"))
    self.assertIs(tf.int32, tf.as_dtype("int32"))
    self.assertIs(tf.uint8, tf.as_dtype("uint8"))
    self.assertIs(tf.uint16, tf.as_dtype("uint16"))
    self.assertIs(tf.int16, tf.as_dtype("int16"))
    self.assertIs(tf.int8, tf.as_dtype("int8"))
    self.assertIs(tf.string, tf.as_dtype("string"))
    self.assertIs(tf.complex64, tf.as_dtype("complex64"))
    self.assertIs(tf.complex128, tf.as_dtype("complex128"))
    self.assertIs(tf.int64, tf.as_dtype("int64"))
    self.assertIs(tf.bool, tf.as_dtype("bool"))
    self.assertIs(tf.qint8, tf.as_dtype("qint8"))
    self.assertIs(tf.quint8, tf.as_dtype("quint8"))
    self.assertIs(tf.qint32, tf.as_dtype("qint32"))
    self.assertIs(tf.bfloat16, tf.as_dtype("bfloat16"))
    self.assertIs(tf.float32_ref, tf.as_dtype("float32_ref"))
    self.assertIs(tf.float64_ref, tf.as_dtype("float64_ref"))
    self.assertIs(tf.int32_ref, tf.as_dtype("int32_ref"))
    self.assertIs(tf.uint8_ref, tf.as_dtype("uint8_ref"))
    self.assertIs(tf.int16_ref, tf.as_dtype("int16_ref"))
    self.assertIs(tf.int8_ref, tf.as_dtype("int8_ref"))
    self.assertIs(tf.string_ref, tf.as_dtype("string_ref"))
    self.assertIs(tf.complex64_ref, tf.as_dtype("complex64_ref"))
    self.assertIs(tf.complex128_ref, tf.as_dtype("complex128_ref"))
    self.assertIs(tf.int64_ref, tf.as_dtype("int64_ref"))
    self.assertIs(tf.bool_ref, tf.as_dtype("bool_ref"))
    self.assertIs(tf.qint8_ref, tf.as_dtype("qint8_ref"))
    self.assertIs(tf.quint8_ref, tf.as_dtype("quint8_ref"))
    self.assertIs(tf.qint32_ref, tf.as_dtype("qint32_ref"))
    self.assertIs(tf.bfloat16_ref, tf.as_dtype("bfloat16_ref"))
    with self.assertRaises(TypeError):
      tf.as_dtype("not_a_type") 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:36,代碼來源:dtypes_test.py

示例5: testDtypes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def testDtypes(self):
    # Spot check a few.
    config_str = """
      # Test without tf prefix, but using the prefix is strongly recommended!
      configurable.float32 = %float32
      # Test with tf prefix.
      configurable.string = %tf.string
      configurable.qint8 = %tf.qint8
    """
    config.parse_config(config_str)

    vals = configurable()
    self.assertIs(vals['float32'], tf.float32)
    self.assertIs(vals['string'], tf.string)
    self.assertIs(vals['qint8'], tf.qint8) 
開發者ID:google,項目名稱:gin-config,代碼行數:17,代碼來源:external_configurables_test.py

示例6: test_qint8

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def test_qint8():
    tf_qint8 = as_dtype(tf.qint8).as_datatype_enum
    np_int8 = DataTypeConverter.get_generic_value(tf_qint8)
    assert np_int8 == np.dtype('int8')
    assert isinstance(np_int8, DataTypeConverter.__utensor_generic_type__)
    assert isinstance(DataTypeConverter.get_tf_value(np_int8),
                      DataTypeConverter.__tfproto_type__) 
開發者ID:uTensor,項目名稱:utensor_cgen,代碼行數:9,代碼來源:test_converter.py

示例7: load_quantized_model

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def load_quantized_model(model, ckpt_path, session, name):
    """Loads quantized model and dequantizes variables"""
    start_time = time.time()
    dequant_ops = []
    for tsr in tf.trainable_variables():
        with tf.variable_scope(tsr.name.split(":")[0], reuse=True):
            quant_tsr = tf.get_variable("quantized", dtype=tf.qint8)
            min_range = tf.get_variable("min_range")
            max_range = tf.get_variable("max_range")
            dequant_ops.append(tsr.assign(tf.dequantize(quant_tsr, min_range, max_range, "SCALED")))
    restore_list = [tsr for tsr in tf.global_variables() if tsr not in tf.trainable_variables()]

    saver = tf.train.Saver(restore_list)
    try:
        saver.restore(session, ckpt_path)
    except tf.errors.NotFoundError as e:
        utils.print_out("Can't load checkpoint")
        print_variables_in_ckpt(ckpt_path)
        utils.print_out("%s" % str(e))
    session.run(tf.tables_initializer())
    session.run(dequant_ops)
    utils.print_out(
        "  loaded %s model parameters from %s, time %.2fs"
        % (name, ckpt_path, time.time() - start_time)
    )
    return model 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:28,代碼來源:model_helper.py

示例8: add_quatization_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def add_quatization_variables(model):
    """Add to graph quantization variables"""
    with model.graph.as_default():
        for tsr in tf.trainable_variables():
            with tf.variable_scope(tsr.name.split(":")[0]):
                output, min_range, max_range = tf.quantize(
                    tsr, tf.reduce_min(tsr), tf.reduce_max(tsr), tf.qint8, mode="SCALED"
                )
                tf.get_variable(
                    "quantized",
                    initializer=output,
                    trainable=False,
                    collections=[_QUANTIZATION_COLLECTION],
                )
                tf.get_variable(
                    "min_range",
                    initializer=min_range,
                    trainable=False,
                    collections=[_QUANTIZATION_COLLECTION],
                )
                tf.get_variable(
                    "max_range",
                    initializer=max_range,
                    trainable=False,
                    collections=[_QUANTIZATION_COLLECTION],
                ) 
開發者ID:NervanaSystems,項目名稱:nlp-architect,代碼行數:28,代碼來源:model_helper.py

示例9: testQuantizedTypes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import qint8 [as 別名]
def testQuantizedTypes(self):
    # Test with array.
    data = [(21,), (22,), (23,)]

    t = tensor_util.make_tensor_proto(data, dtype=tf.qint32)
    self.assertProtoEquals("""
      dtype: DT_QINT32
      tensor_shape { dim { size: 3 } }
      tensor_content: "\025\000\000\000\026\000\000\000\027\000\000\000"
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(tf.qint32.as_numpy_dtype, a.dtype)
    self.assertAllEqual(np.array(data, dtype=a.dtype), a)

    t = tensor_util.make_tensor_proto(data, dtype=tf.quint8)
    self.assertProtoEquals("""
      dtype: DT_QUINT8
      tensor_shape { dim { size: 3 } }
      tensor_content: "\025\026\027"
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(tf.quint8.as_numpy_dtype, a.dtype)
    self.assertAllEqual(np.array(data, dtype=a.dtype), a)

    t = tensor_util.make_tensor_proto(data, dtype=tf.qint8)
    self.assertProtoEquals("""
      dtype: DT_QINT8
      tensor_shape { dim { size: 3 } }
      tensor_content: "\025\026\027"
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(tf.qint8.as_numpy_dtype, a.dtype)
    self.assertAllEqual(np.array(data, dtype=a.dtype), a)

    t = tensor_util.make_tensor_proto(data, dtype=tf.quint16)
    self.assertProtoEquals("""
      dtype: DT_QUINT16
      tensor_shape { dim { size: 3 } }
      tensor_content: "\025\000\026\000\027\000"
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(tf.quint16.as_numpy_dtype, a.dtype)
    self.assertAllEqual(np.array(data, dtype=a.dtype), a)

    t = tensor_util.make_tensor_proto(data, dtype=tf.qint16)
    self.assertProtoEquals("""
      dtype: DT_QINT16
      tensor_shape { dim { size: 3 } }
      tensor_content: "\025\000\026\000\027\000"
      """, t)
    a = tensor_util.MakeNdarray(t)
    self.assertEquals(tf.qint16.as_numpy_dtype, a.dtype)
    self.assertAllEqual(np.array(data, dtype=a.dtype), a) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:55,代碼來源:tensor_util_test.py


注:本文中的tensorflow.qint8方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。