當前位置: 首頁>>代碼示例>>Python>>正文


Python nest.map_structure方法代碼示例

本文整理匯總了Python中tensorflow.python.util.nest.map_structure方法的典型用法代碼示例。如果您正苦於以下問題:Python nest.map_structure方法的具體用法?Python nest.map_structure怎麽用?Python nest.map_structure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.util.nest的用法示例。


在下文中一共展示了nest.map_structure方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _rnn_output_size

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _rnn_output_size(self):
        size = self._cell.output_size
        if self._output_layer is None:
            return size
        else:
            # To use layer's compute_output_shape, we need to convert the
            # RNNCell's output_size entries into shapes with an unknown
            # batch size.  We then pass this through the layer's
            # compute_output_shape and read off all but the first (batch)
            # dimensions to get the output size of the rnn with the layer
            # applied to the top.
            output_shape_with_unknown_batch = nest.map_structure(
                lambda s: tensor_shape.TensorShape([None]).concatenate(s),
                size)
            layer_output_shape = self._output_layer.compute_output_shape(  # pylint: disable=protected-access
                output_shape_with_unknown_batch)
        return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:vineetjohn,項目名稱:linguistic-style-transfer,代碼行數:19,代碼來源:custom_decoder.py

示例2: output_dtype

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def output_dtype(self):
        """Types of output of one step.
        """
        # Assume the dtype of the cell is the output_size structure
        # containing the input_state's first component's dtype.
        # Return that structure and the sample_ids_dtype from the helper.
        dtype = nest.flatten(self._initial_state)[0].dtype
        return AttentionRNNDecoderOutput(
            logits=nest.map_structure(lambda _: dtype, self._rnn_output_size()),
            sample_id=self._helper.sample_ids_dtype,
            cell_output=nest.map_structure(
                lambda _: dtype, self._cell.output_size),
            attention_scores=nest.map_structure(
                lambda _: dtype, self._alignments_size()),
            attention_context=nest.map_structure(
                lambda _: dtype, self._cell.state_size.attention)) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:18,代碼來源:rnn_decoders.py

示例3: _rnn_output_size

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _rnn_output_size(self):
        size = self._cell.output_size
        if self._output_layer is tf.identity:
            return size
        else:
            # To use layer's compute_output_shape, we need to convert the
            # RNNCell's output_size entries into shapes with an unknown
            # batch size.  We then pass this through the layer's
            # compute_output_shape and read off all but the first (batch)
            # dimensions to get the output size of the rnn with the layer
            # applied to the top.
            output_shape_with_unknown_batch = nest.map_structure(
                lambda s: tensor_shape.TensorShape([None]).concatenate(s),
                size)
            layer_output_shape = self._output_layer.compute_output_shape(
                output_shape_with_unknown_batch)
            return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:19,代碼來源:rnn_decoder_base.py

示例4: _create

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _create(self):
        # Concat bridge inputs on the depth dimensions
        bridge_input = nest.map_structure(
            lambda x: tf.reshape(x, [self.batch_size, _total_tensor_depth(x)]),
            self._bridge_input)
        bridge_input_flat = nest.flatten([bridge_input])
        bridge_input_concat = tf.concat(bridge_input_flat, axis=1)

        state_size_splits = nest.flatten(self.decoder_state_size)
        total_decoder_state_size = sum(state_size_splits)

        # Pass bridge inputs through a fully connected layer layer
        initial_state_flat = tf.contrib.layers.fully_connected(
            bridge_input_concat,
            num_outputs=total_decoder_state_size,
            activation_fn=self._activation_fn,
            weights_initializer=tf.truncated_normal_initializer(
                stddev=self.parameter_init),
            biases_initializer=tf.zeros_initializer(),
            scope=None)

        # Shape back into required state size
        initial_state = tf.split(initial_state_flat, state_size_splits, axis=1)
        return nest.pack_sequence_as(self.decoder_state_size, initial_state) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:26,代碼來源:bridge.py

示例5: tile_batch

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def tile_batch(t, multiplier, name=None):
    """Tile the batch dimension of a (possibly nested structure of) tensor(s) t.
    For each tensor t in a (possibly nested structure) of tensors,
    this function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed of
    minibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape
    `[batch_size * multiplier, s0, s1, ...]` composed of minibatch entries
    `t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated
    `multiplier` times.
    Args:
      t: `Tensor` shaped `[batch_size, ...]`.
      multiplier: Python int.
      name: Name scope for any created operations.
    Returns:
      A (possibly nested structure of) `Tensor` shaped
      `[batch_size * multiplier, ...]`.
    Raises:
      ValueError: if tensor(s) `t` do not have a statically known rank or
      the rank is < 1.
    """
    flat_t = nest.flatten(t)
    with tf.name_scope(name, "tile_batch", flat_t + [multiplier]):
        return nest.map_structure(lambda t_: _tile_batch(t_, multiplier), t) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:24,代碼來源:beam_search_decoder_from_tensorflow.py

示例6: _rnn_output_size

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _rnn_output_size(self):
        size = self._cell.output_size
        if self._output_layer is None:
            return size
        else:
            # To use layer's compute_output_shape, we need to convert the
            # RNNCell's output_size entries into shapes with an unknown
            # batch size.  We then pass this through the layer's
            # compute_output_shape and read off all but the first (batch)
            # dimensions to get the output size of the rnn with the layer
            # applied to the top.
            output_shape_with_unknown_batch = nest.map_structure(
                lambda s: tensor_shape.TensorShape([None]).concatenate(s),
                size)
            layer_output_shape = self._output_layer._compute_output_shape(  # pylint: disable=protected-access
                output_shape_with_unknown_batch)
            return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:19,代碼來源:beam_search_decoder_from_tensorflow.py

示例7: __call__

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def __call__(self, inputs, state, scope=None):
    """Run the cell and add its inputs to its outputs.

    Args:
      inputs: cell inputs.
      state: cell state.
      scope: optional cell scope.

    Returns:
      Tuple of cell outputs and new state.

    Raises:
      TypeError: If cell inputs and outputs have different structure (type).
      ValueError: If cell inputs and outputs have different structure (value).
    """
    outputs, new_state = self._cell(inputs, state, scope=scope)
    nest.assert_same_structure(inputs, outputs)
    # Ensure shapes match
    def assert_shape_match(inp, out):
      inp.get_shape().assert_is_compatible_with(out.get_shape())
    nest.map_structure(assert_shape_match, inputs, outputs)
    res_outputs = nest.map_structure(
        lambda inp, out: inp + out, inputs, outputs)
    return (res_outputs, new_state) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:rnn_cell_impl.py

示例8: _BuildCondTensor

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _BuildCondTensor(self, v):
    if isinstance(v, ops.Operation):
      # Use pivot as the proxy for this op.
      return with_dependencies([v], self._pivot)
    elif isinstance(v, (ops.IndexedSlices, sparse_tensor.SparseTensor)):
      values = self._ProcessOutputTensor(v.values)
      indices = self._ProcessOutputTensor(v.indices)
      if isinstance(v, ops.IndexedSlices):
        dense_shape = v.dense_shape
        if dense_shape is not None:
          dense_shape = self._ProcessOutputTensor(dense_shape)
        return ops.IndexedSlices(values, indices, dense_shape)
      else:
        dense_shape = self._ProcessOutputTensor(v.dense_shape)
        return sparse_tensor.SparseTensor(indices, values, dense_shape)
    else:
      v = nest.map_structure(_convert_tensorarray_to_flow, v)
      return self._ProcessOutputTensor(ops.convert_to_tensor(v)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:control_flow_ops.py

示例9: __call__

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def __call__(self, inputs, state, scope=None):
    """Run the cell and add its inputs to its outputs.

    Args:
      inputs: cell inputs.
      state: cell state.
      scope: optional cell scope.

    Returns:
      Tuple of cell outputs and new state.

    Raises:
      TypeError: If cell inputs and outputs have different structure (type).
      ValueError: If cell inputs and outputs have different structure (value).
    """
    outputs, new_state = self._cell(inputs, state, scope=scope)
    nest.assert_same_structure(inputs, outputs)
    # Ensure shapes match
    def assert_shape_match(inp, out):
      inp.get_shape().assert_is_compatible_with(out.get_shape())
    nest.map_structure(assert_shape_match, inputs, outputs)
    res_outputs = nest.map_structure(self._highway, inputs, outputs)
    return (res_outputs, new_state) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:rnn_cell.py

示例10: _rnn_output_size

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _rnn_output_size(self):
    size = self._cell.output_size
    if self._output_layer is None:
      return size
    else:
      # To use layer's compute_output_shape, we need to convert the
      # RNNCell's output_size entries into shapes with an unknown
      # batch size.  We then pass this through the layer's
      # compute_output_shape and read off all but the first (batch)
      # dimensions to get the output size of the rnn with the layer
      # applied to the top.
      output_shape_with_unknown_batch = nest.map_structure(
          lambda s: tensor_shape.TensorShape([None]).concatenate(s),
          size)
      layer_output_shape = self._output_layer._compute_output_shape(  # pylint: disable=protected-access
          output_shape_with_unknown_batch)
      return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:beam_search_decoder.py

示例11: _rnn_output_size

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _rnn_output_size(self):
		size = self._cell.output_size
		if self._output_layer is None:
			return size
		else:
			# To use layer's compute_output_shape, we need to convert the
			# RNNCell's output_size entries into shapes with an unknown
			# batch size.  We then pass this through the layer's
			# compute_output_shape and read off all but the first (batch)
			# dimensions to get the output size of the rnn with the layer
			# applied to the top.
			output_shape_with_unknown_batch = nest.map_structure(
					lambda s: tensor_shape.TensorShape([None]).concatenate(s),
					size)
			layer_output_shape = self._output_layer._compute_output_shape(  # pylint: disable=protected-access
					output_shape_with_unknown_batch)
			return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:rishikksh20,項目名稱:vae_tacotron2,代碼行數:19,代碼來源:custom_decoder.py

示例12: __call__

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def __call__(self, inputs, state, scope=None):
    """Run the cell and add its inputs to its outputs.
    Args:
      inputs: cell inputs.
      state: cell state.
      scope: optional cell scope.
    Returns:
      Tuple of cell outputs and new state.
    Raises:
      TypeError: If cell inputs and outputs have different structure (type).
      ValueError: If cell inputs and outputs have different structure (value).
    """
    outputs, new_state = self._cell(inputs, state, scope=scope)
    nest.assert_same_structure(inputs, outputs)
    # Ensure shapes match
    def assert_shape_match(inp, out):
      inp.get_shape().assert_is_compatible_with(out.get_shape())
    nest.map_structure(assert_shape_match, inputs, outputs)
    res_outputs = nest.map_structure(self._highway, inputs, outputs)
    return (res_outputs, new_state) 
開發者ID:shaohua0116,項目名稱:Multiview2Novelview,代碼行數:22,代碼來源:rnn_cell.py

示例13: gnmt_residual_fn

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def gnmt_residual_fn(inputs, outputs):
  """Residual function that handles different inputs and outputs inner dims.

  Args:
    inputs: cell inputs, this is actual inputs concatenated with the attention
      vector.
    outputs: cell outputs

  Returns:
    outputs + actual inputs
  """
  def split_input(inp, out):
    out_dim = out.get_shape().as_list()[-1]
    inp_dim = inp.get_shape().as_list()[-1]
    return tf.split(inp, [out_dim, inp_dim - out_dim], axis=-1)
  actual_inputs, _ = nest.map_structure(split_input, inputs, outputs)
  def assert_shape_match(inp, out):
    inp.get_shape().assert_is_compatible_with(out.get_shape())
  nest.assert_same_structure(actual_inputs, outputs)
  nest.map_structure(assert_shape_match, actual_inputs, outputs)
  return nest.map_structure(lambda inp, out: inp + out, actual_inputs, outputs) 
開發者ID:snuspl,項目名稱:parallax,代碼行數:23,代碼來源:gnmt_model.py

示例14: _rnn_output_size

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def _rnn_output_size(self):
        size = self._cell.output_size
        if self._output_layer is None:
            return size
        else:
            # To use layer's compute_output_shape, we need to convert the
            # RNNCell's output_size entries into shapes with an unknown
            # batch size.  We then pass this through the layer's
            # compute_output_shape and read off all but the first (batch)
            # dimensions to get the output size of the rnn with the layer
            # applied to the top.
            output_shape_with_unknown_batch = nest.map_structure(
                lambda s: tensor_shape.TensorShape([None]).concatenate(s),
                size)
            layer_output_shape = self._output_layer._compute_output_shape(  # pylint: disable=protected-access
                output_shape_with_unknown_batch)
        return nest.map_structure(lambda s: s[1:], layer_output_shape) 
開發者ID:HareeshBahuleyan,項目名稱:tf-var-attention,代碼行數:19,代碼來源:basic_decoder.py

示例15: output_dtype

# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import map_structure [as 別名]
def output_dtype(self):
        # Assume the dtype of the cell is the output_size structure
        # containing the input_state's first component's dtype.
        # Return that structure and int32 (the id)
        dtype = nest.flatten(self._initial_state)[0].dtype
        return BasicDecoderOutput(
            nest.map_structure(lambda _: dtype, self._rnn_output_size()),
            dtypes.int32) 
開發者ID:vineetjohn,項目名稱:linguistic-style-transfer,代碼行數:10,代碼來源:custom_decoder.py


注:本文中的tensorflow.python.util.nest.map_structure方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。