本文整理匯總了Python中tensorflow.python.util.nest.is_sequence方法的典型用法代碼示例。如果您正苦於以下問題:Python nest.is_sequence方法的具體用法?Python nest.is_sequence怎麽用?Python nest.is_sequence使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.util.nest
的用法示例。
在下文中一共展示了nest.is_sequence方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: call
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def call(self, inputs, state):
"""Run this multi-layer cell on inputs, starting from state."""
cur_state_pos = 0
cur_inp = inputs
new_states = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("cell_%d" % i):
if self._state_is_tuple:
if not nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s" %
(len(self.state_size), state))
cur_state = state[i]
else:
cur_state = array_ops.slice(state, [0, cur_state_pos],
[-1, cell.state_size])
cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
new_states = (tuple(new_states) if self._state_is_tuple else
array_ops.concat(new_states, 1))
return cur_inp, new_states
示例2: __init__
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def __init__(self, cells, state_is_tuple=True):
"""Create a RNN cell composed sequentially of a number of RNNCells.
Args:
cells: list of RNNCells that will be composed in this order.
state_is_tuple: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. If False, the states are all
concatenated along the column axis. This latter behavior will soon be
deprecated.
Raises:
ValueError: if cells is empty (not allowed), or at least one of the cells
returns a state tuple but the flag `state_is_tuple` is `False`.
"""
if not cells:
raise ValueError("Must specify at least one cell for MultiRNNCell.")
self._cells = cells
self._state_is_tuple = state_is_tuple
if not state_is_tuple:
if any(nest.is_sequence(c.state_size) for c in self._cells):
raise ValueError("Some cells return tuples of states, but the flag "
"state_is_tuple is not set. State sizes are: %s"
% str([c.state_size for c in self._cells]))
示例3: __call__
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def __call__(self, inputs, state, scope=None):
"""Run this multi-layer cell on inputs, starting from state."""
with vs.variable_scope(scope or "multi_rnn_cell"):
cur_state_pos = 0
cur_inp = inputs
new_states = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("cell_%d" % i):
if self._state_is_tuple:
if not nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s"
% (len(self.state_size), state))
cur_state = state[i]
else:
cur_state = array_ops.slice(
state, [0, cur_state_pos], [-1, cell.state_size])
cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
new_states = (tuple(new_states) if self._state_is_tuple else
array_ops.concat(new_states, 1))
return cur_inp, new_states
示例4: linear
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0,
is_train=None):
with tf.variable_scope(scope or "linear"):
if args is None or (nest.is_sequence(args) and not args):
raise ValueError("`args` must be specified")
if not nest.is_sequence(args):
args = [args]
flat_args = [flatten(arg, 1) for arg in args]
# if input_keep_prob < 1.0:
assert is_train is not None
flat_args = [tf.cond(is_train, lambda: tf.nn.dropout(arg, input_keep_prob), lambda: arg)
for arg in flat_args]
flat_out = _linear(flat_args, output_size, bias)
out = reconstruct(flat_out, args[0], 1)
if squeeze:
out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1])
return out
示例5: linear
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0,
is_train=None):
with tf.variable_scope(scope or "linear"):
if args is None or (nest.is_sequence(args) and not args):
raise ValueError("`args` must be specified")
if not nest.is_sequence(args):
args = [args]
flat_args = [flatten(arg, 1) for arg in args]
# if input_keep_prob < 1.0:
assert is_train is not None
flat_args = [tf.cond(is_train, lambda: tf.nn.dropout(arg, input_keep_prob), lambda: arg)
for arg in flat_args]
flat_out = _linear(flat_args, output_size, bias)
out = reconstruct(flat_out, args[0], 1)
if squeeze:
out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1])
if wd:
add_wd(wd)
return out
示例6: log_values
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def log_values(writer, itr, tags=None, values=None, dict=None):
if dict is not None:
assert tags is None and values is None
tags = dict.keys()
values = dict.values()
else:
if not nest.is_sequence(tags):
tags, values = [tags], [values]
elif len(tags) != len(values):
raise ValueError('tag and value have different lenghts:'
' {} vs {}'.format(len(tags), len(values)))
for t, v in zip(tags, values):
summary = tf.Summary.Value(tag=t, simple_value=v)
summary = tf.Summary(value=[summary])
writer.add_summary(summary, itr)
示例7: map_nested
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def map_nested(map_fn, nested):
"""Executes map_fn on every element in a (potentially) nested structure.
Args:
map_fn: A callable to execute on each element in 'nested'.
nested: A potentially nested combination of sequence objects. Sequence
objects include tuples, lists, namedtuples, and all subclasses of
collections.Sequence except strings. See nest.is_sequence for details.
For example [1, ('hello', 4.3)] is a nested structure containing elements
1, 'hello', and 4.3.
Returns:
out_structure: A potentially nested combination of sequence objects with the
same structure as the 'nested' input argument. out_structure
contains the result of applying map_fn to each element in 'nested'. For
example map_nested(lambda x: x+1, [1, (3, 4.3)]) returns [2, (4, 5.3)].
"""
out = map(map_fn, nest.flatten(nested))
return nest.pack_sequence_as(nested, out)
示例8: __call__
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def __call__(self, inputs, state, scope=None):
"""Run this multi-layer cell on inputs, starting from state."""
with vs.variable_scope(scope or type(self).__name__): # "MultiRNNCell"
cur_state_pos = 0
cur_inp = inputs
new_states = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("Cell%d" % i):
if self._state_is_tuple:
if not nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s"
% (len(self.state_size), state))
cur_state = state[i]
else:
cur_state = array_ops.slice(
state, [0, cur_state_pos], [-1, cell.state_size])
cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
new_states = (tuple(new_states) if self._state_is_tuple
else array_ops.concat(1, new_states))
return cur_inp, new_states
示例9: map_nested
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def map_nested(map_fn, nested):
"""Executes map_fn on every element in a (potentially) nested structure.
Args:
map_fn: A callable to execute on each element in 'nested'.
nested: A potentially nested combination of sequence objects. Sequence
objects include tuples, lists, namedtuples, and all subclasses of
collections.Sequence except strings. See nest.is_sequence for details.
For example [1, ('hello', 4.3)] is a nested structure containing elements
1, 'hello', and 4.3.
Returns:
out_structure: A potentially nested combination of sequence objects with the
same structure as the 'nested' input argument. out_structure
contains the result of applying map_fn to each element in 'nested'. For
example map_nested(lambda x: x+1, [1, (3, 4.3)]) returns [2, (4, 5.3)].
"""
out = list(map(map_fn, nest.flatten(nested)))
return nest.pack_sequence_as(nested, out)
示例10: call
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def call(self, inputs, state):
"""Run this multi-layer cell on inputs, starting from state."""
cur_state_pos = 0
cur_inp = inputs
new_states = []
new_outputs = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("cell_%d" % i):
if self._state_is_tuple:
if not nest.is_sequence(state):
raise ValueError("Expected state to be a tuple of length %d, but received: %s" % (len(self.state_size), state))
cur_state = state[i]
else:
cur_state = array_ops.slice(state, [0, cur_state_pos], [-1, cell.state_size])
cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
new_outputs.append(cur_inp)
new_states = (tuple(new_states) if self._state_is_tuple else array_ops.concat(new_states, 1))
if self._intermediate_outputs:
new_outputs = (tuple(new_outputs) if self._state_is_tuple else array_ops.concat(new_outputs, 1))
return new_outputs, new_states
else:
return cur_inp, new_states
示例11: __init__
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def __init__(self, cells, state_is_tuple=True):
"""Create a RNN cell composed sequentially of a number of RNNCells.
Args:
cells: list of RNNCells that will be composed in this order.
state_is_tuple: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. If False, the states are all
concatenated along the column axis. This latter behavior will soon be
deprecated.
Raises:
ValueError: if cells is empty (not allowed), or at least one of the cells
returns a state tuple but the flag `state_is_tuple` is `False`.
"""
if not cells:
raise ValueError("Must specify at least one cell for MultiRNNCell.")
self._cells = cells
self._state_is_tuple = state_is_tuple
if not state_is_tuple:
if any(nest.is_sequence(c.state_size) for c in self._cells):
raise ValueError("Some cells return tuples of states, but the flag "
"state_is_tuple is not set. State sizes are: %s"
% str([c.state_size for c in self._cells]))
示例12: _fwlinear
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def _fwlinear(self, args, output_size, scope=None):
if args is None or (nest.is_sequence(args) and not args):
raise ValueError("`args` must be specified")
if not nest.is_sequence(args):
args = [args]
assert len(args) == 2
assert args[0].get_shape().as_list()[1] == output_size
dtype = [a.dtype for a in args][0]
with vs.variable_scope(scope or "Linear"):
matrixW = vs.get_variable(
"MatrixW", dtype=dtype, initializer=tf.convert_to_tensor(np.eye(output_size, dtype=np.float32) * .05))
matrixC = vs.get_variable(
"MatrixC", [args[1].get_shape().as_list()[1], output_size], dtype=dtype)
res = tf.matmul(args[0], matrixW) + tf.matmul(args[1], matrixC)
return res
示例13: linear
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0,
is_train=None):
if args is None or (nest.is_sequence(args) and not args):
raise ValueError("`args` must be specified")
if not nest.is_sequence(args):
args = [args]
flat_args = [flatten(arg, 1) for arg in args]
if input_keep_prob < 1.0:
assert is_train is not None
flat_args = [tf.cond(is_train, lambda: tf.nn.dropout(arg, input_keep_prob), lambda: arg)
for arg in flat_args]
with tf.variable_scope(scope or 'Linear'):
flat_out = _linear(flat_args, output_size, bias, bias_initializer=tf.constant_initializer(bias_start))
out = reconstruct(flat_out, args[0], 1)
if squeeze:
out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1])
if wd:
add_wd(wd)
return out
示例14: _infer_state_dtype
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def _infer_state_dtype(explicit_dtype, state):
"""Infer the dtype of an RNN state.
Args:
explicit_dtype: explicitly declared dtype or None.
state: RNN's hidden state. Must be a Tensor or a nested iterable containing
Tensors.
Returns:
dtype: inferred dtype of hidden state.
Raises:
ValueError: if `state` has heterogeneous dtypes or is empty.
"""
if explicit_dtype is not None:
return explicit_dtype
elif nest.is_sequence(state):
inferred_dtypes = [element.dtype for element in nest.flatten(state)]
if not inferred_dtypes:
raise ValueError("Unable to infer dtype from empty state.")
all_same = all([x == inferred_dtypes[0] for x in inferred_dtypes])
if not all_same:
raise ValueError(
"State has tensors of different inferred_dtypes. Unable to infer a "
"single representative dtype.")
return inferred_dtypes[0]
else:
return state.dtype
# pylint: disable=unused-argument
示例15: __init__
# 需要導入模塊: from tensorflow.python.util import nest [as 別名]
# 或者: from tensorflow.python.util.nest import is_sequence [as 別名]
def __init__(self, cells, state_is_tuple=True):
"""Create a RNN cell composed sequentially of a number of RNNCells.
Args:
cells: list of RNNCells that will be composed in this order.
state_is_tuple: If True, accepted and returned states are n-tuples, where
`n = len(cells)`. If False, the states are all
concatenated along the column axis. This latter behavior will soon be
deprecated.
Raises:
ValueError: if cells is empty (not allowed), or at least one of the cells
returns a state tuple but the flag `state_is_tuple` is `False`.
"""
super(MultiRNNCell, self).__init__()
if not cells:
raise ValueError("Must specify at least one cell for MultiRNNCell.")
if not nest.is_sequence(cells):
raise TypeError(
"cells must be a list or tuple, but saw: %s." % cells)
self._cells = cells
self._state_is_tuple = state_is_tuple
if not state_is_tuple:
if any(nest.is_sequence(c.state_size) for c in self._cells):
raise ValueError("Some cells return tuples of states, but the flag "
"state_is_tuple is not set. State sizes are: %s"
% str([c.state_size for c in self._cells]))