當前位置: 首頁>>代碼示例>>Python>>正文


Python deprecation.deprecated_argument_lookup方法代碼示例

本文整理匯總了Python中tensorflow.python.util.deprecation.deprecated_argument_lookup方法的典型用法代碼示例。如果您正苦於以下問題:Python deprecation.deprecated_argument_lookup方法的具體用法?Python deprecation.deprecated_argument_lookup怎麽用?Python deprecation.deprecated_argument_lookup使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.util.deprecation的用法示例。


在下文中一共展示了deprecation.deprecated_argument_lookup方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: reverse_sequence

# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated_argument_lookup [as 別名]
def reverse_sequence(input,
                     seq_lengths,
                     seq_axis=None,
                     batch_axis=None,
                     name=None,
                     seq_dim=None,
                     batch_dim=None):
  seq_axis = deprecation.deprecated_argument_lookup("seq_axis", seq_axis,
                                                    "seq_dim", seq_dim)
  batch_axis = deprecation.deprecated_argument_lookup("batch_axis", batch_axis,
                                                      "batch_dim", batch_dim)
  return gen_array_ops.reverse_sequence(
      input=input,
      seq_lengths=seq_lengths,
      seq_dim=seq_axis,
      batch_dim=batch_axis,
      name=name)
# pylint: enable=redefined-builtin 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:array_ops.py

示例2: reverse_sequence

# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated_argument_lookup [as 別名]
def reverse_sequence(input,
                     seq_lengths,
                     seq_axis=None,
                     batch_axis=None,
                     name=None,
                     seq_dim=None,
                     batch_dim=None):
  seq_axis = deprecation.deprecated_argument_lookup("seq_axis", seq_axis,
                                                    "seq_dim", seq_dim)
  batch_axis = deprecation.deprecated_argument_lookup("batch_axis", batch_axis,
                                                      "batch_dim", batch_dim)
  return gen_array_ops.reverse_sequence(
      input=input,
      seq_lengths=seq_lengths,
      seq_dim=seq_axis,
      batch_dim=batch_axis,
      name=name)


# pylint: enable=redefined-builtin 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:array_ops.py

示例3: cosine_distance

# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated_argument_lookup [as 別名]
def cosine_distance(predictions,
                    labels=None,
                    axis=None,
                    weights=1.0,
                    scope=None,
                    dim=None):
  """Adds a cosine-distance loss to the training procedure.

  Note that the function assumes that `predictions` and `labels` are already
  unit-normalized.

  Args:
    predictions: An arbitrary matrix.
    labels: A `Tensor` whose shape matches 'predictions'
    axis: The dimension along which the cosine distance is computed.
    weights: Coefficients for the loss a scalar, a tensor of shape
      [batch_size] or a tensor whose shape matches `predictions`.
    scope: The scope for the operations performed in computing the loss.
    dim: The old (deprecated) name for `axis`.

  Returns:
    A scalar `Tensor` representing the loss value.

  Raises:
    ValueError: If `predictions` shape doesn't match `labels` shape, or
      `weights` is `None`.
  """
  axis = deprecated_argument_lookup(
      "axis", axis, "dim", dim)
  if axis is None:
    raise ValueError("You must specify 'axis'.")
  with ops.name_scope(scope, "cosine_distance_loss",
                      [predictions, labels, weights]) as scope:
    predictions.get_shape().assert_is_compatible_with(labels.get_shape())

    predictions = math_ops.cast(predictions, dtypes.float32)
    labels = math_ops.cast(labels, dtypes.float32)

    radial_diffs = math_ops.multiply(predictions, labels)
    losses = 1 - math_ops.reduce_sum(
        radial_diffs, axis=[
            axis,
        ])
    return compute_weighted_loss(losses, weights, scope=scope) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:46,代碼來源:loss_ops.py


注:本文中的tensorflow.python.util.deprecation.deprecated_argument_lookup方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。