本文整理匯總了Python中tensorflow.python.util.deprecation.deprecated方法的典型用法代碼示例。如果您正苦於以下問題:Python deprecation.deprecated方法的具體用法?Python deprecation.deprecated怎麽用?Python deprecation.deprecated使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.util.deprecation
的用法示例。
在下文中一共展示了deprecation.deprecated方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_global_step
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def create_global_step(graph=None):
"""Create global step tensor in graph.
This API is deprecated. Use core framework training version instead.
Args:
graph: The graph in which to create the global step tensor. If missing, use
default graph.
Returns:
Global step tensor.
Raises:
ValueError: if global step tensor is already defined.
"""
return training_util.create_global_step(graph)
示例2: test_static_fn_with_one_line_doc
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def test_static_fn_with_one_line_doc(self, mock_warning):
date = "2016-07-04"
instructions = "This is how you update..."
@deprecation.deprecated(date, instructions)
def _fn(arg0, arg1):
"""fn doc."""
return arg0 + arg1
# Assert function docs are properly updated.
self.assertEqual("_fn", _fn.__name__)
self.assertEqual(
"fn doc. (deprecated)"
"\n"
"\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s."
"\nInstructions for updating:\n%s" % (date, instructions),
_fn.__doc__)
# Assert calling new fn issues log warning.
self.assertEqual(3, _fn(1, 2))
self.assertEqual(1, mock_warning.call_count)
(args, _) = mock_warning.call_args
self.assertRegexpMatches(args[0], r"deprecated and will be removed after")
self._assert_subset(set([date, instructions]), set(args[1:]))
示例3: test_static_fn_no_doc
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def test_static_fn_no_doc(self, mock_warning):
date = "2016-07-04"
instructions = "This is how you update..."
@deprecation.deprecated(date, instructions)
def _fn(arg0, arg1):
return arg0 + arg1
# Assert function docs are properly updated.
self.assertEqual("_fn", _fn.__name__)
self.assertEqual(
"DEPRECATED FUNCTION"
"\n"
"\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s."
"\nInstructions for updating:"
"\n%s" % (date, instructions),
_fn.__doc__)
# Assert calling new fn issues log warning.
self.assertEqual(3, _fn(1, 2))
self.assertEqual(1, mock_warning.call_count)
(args, _) = mock_warning.call_args
self.assertRegexpMatches(args[0], r"deprecated and will be removed after")
self._assert_subset(set([date, instructions]), set(args[1:]))
示例4: test_varargs
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def test_varargs(self, mock_warning):
date = "2016-07-04"
instructions = "This is how you update..."
@deprecation.deprecated_args(date, instructions, "deprecated")
def _fn(arg0, arg1, *deprecated):
return arg0 + arg1 if deprecated else arg1 + arg0
# Assert calls without the deprecated argument log nothing.
self.assertEqual(3, _fn(1, 2))
self.assertEqual(0, mock_warning.call_count)
# Assert calls with the deprecated argument log a warning.
self.assertEqual(3, _fn(1, 2, True, False))
self.assertEqual(1, mock_warning.call_count)
(args, _) = mock_warning.call_args
self.assertRegexpMatches(args[0], r"deprecated and will be removed after")
self._assert_subset(set([date, instructions]), set(args[1:]))
示例5: test_kwargs
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def test_kwargs(self, mock_warning):
date = "2016-07-04"
instructions = "This is how you update..."
@deprecation.deprecated_args(date, instructions, "deprecated")
def _fn(arg0, arg1, **deprecated):
return arg0 + arg1 if deprecated else arg1 + arg0
# Assert calls without the deprecated argument log nothing.
self.assertEqual(3, _fn(1, 2))
self.assertEqual(0, mock_warning.call_count)
# Assert calls with the deprecated argument log a warning.
self.assertEqual(3, _fn(1, 2, a=True, b=False))
self.assertEqual(1, mock_warning.call_count)
(args, _) = mock_warning.call_args
self.assertRegexpMatches(args[0], r"deprecated and will be removed after")
self._assert_subset(set([date, instructions]), set(args[1:]))
示例6: test_deprecated_illegal_args
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def test_deprecated_illegal_args(self):
instructions = "This is how you update..."
with self.assertRaisesRegexp(ValueError, "date"):
deprecation.deprecated_arg_values(
None, instructions, deprecated=True)
with self.assertRaisesRegexp(ValueError, "date"):
deprecation.deprecated_arg_values(
"", instructions, deprecated=True)
with self.assertRaisesRegexp(ValueError, "YYYY-MM-DD"):
deprecation.deprecated_arg_values(
"07-04-2016", instructions, deprecated=True)
date = "2016-07-04"
with self.assertRaisesRegexp(ValueError, "instructions"):
deprecation.deprecated_arg_values(
date, None, deprecated=True)
with self.assertRaisesRegexp(ValueError, "instructions"):
deprecation.deprecated_arg_values(
date, "", deprecated=True)
with self.assertRaisesRegexp(ValueError, "argument", deprecated=True):
deprecation.deprecated_arg_values(
date, instructions)
示例7: merge_all_summaries
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def merge_all_summaries(key=ops.GraphKeys.SUMMARIES):
"""Merges all summaries collected in the default graph.
This op is deprecated. Please switch to tf.summary.merge_all, which has
identical behavior.
Args:
key: `GraphKey` used to collect the summaries. Defaults to
`GraphKeys.SUMMARIES`.
Returns:
If no summaries were collected, returns None. Otherwise returns a scalar
`Tensor` of type `string` containing the serialized `Summary` protocol
buffer resulting from the merging.
"""
summary_ops = ops.get_collection(key)
if not summary_ops:
return None
else:
return merge_summary(summary_ops)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:22,代碼來源:logging_ops.py
示例8: histogram_summary
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def histogram_summary(tag, values, collections=None, name=None):
# pylint: disable=line-too-long
"""Outputs a `Summary` protocol buffer with a histogram.
This ops is deprecated. Please switch to tf.summary.histogram.
For an explanation of why this op was deprecated, and information on how to
migrate, look ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
The generated
[`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
has one summary value containing a histogram for `values`.
This op reports an `InvalidArgument` error if any value is not finite.
Args:
tag: A `string` `Tensor`. 0-D. Tag to use for the summary value.
values: A real numeric `Tensor`. Any shape. Values to use to
build the histogram.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
name: A name for the operation (optional).
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
"""
with ops.name_scope(name, "HistogramSummary", [tag, values]) as scope:
val = gen_logging_ops._histogram_summary(
tag=tag, values=values, name=scope)
_Collect(val, collections, [ops.GraphKeys.SUMMARIES])
return val
示例9: merge_summary
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def merge_summary(inputs, collections=None, name=None):
# pylint: disable=line-too-long
"""Merges summaries.
This op is deprecated. Please switch to tf.summary.merge, which has identical
behavior.
This op creates a
[`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
protocol buffer that contains the union of all the values in the input
summaries.
When the Op is run, it reports an `InvalidArgument` error if multiple values
in the summaries to merge use the same tag.
Args:
inputs: A list of `string` `Tensor` objects containing serialized `Summary`
protocol buffers.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
name: A name for the operation (optional).
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer resulting from the merging.
"""
with ops.name_scope(name, "MergeSummary", inputs):
val = gen_logging_ops._merge_summary(inputs=inputs, name=name)
_Collect(val, collections, [])
return val
示例10: scalar_summary
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def scalar_summary(tags, values, collections=None, name=None):
# pylint: disable=line-too-long
"""Outputs a `Summary` protocol buffer with scalar values.
This ops is deprecated. Please switch to tf.summary.scalar.
For an explanation of why this op was deprecated, and information on how to
migrate, look ['here'](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/deprecated/__init__.py)
The input `tags` and `values` must have the same shape. The generated
summary has a summary value for each tag-value pair in `tags` and `values`.
Args:
tags: A `string` `Tensor`. Tags for the summaries.
values: A real numeric Tensor. Values for the summaries.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
name: A name for the operation (optional).
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
"""
with ops.name_scope(name, "ScalarSummary", [tags, values]) as scope:
val = gen_logging_ops._scalar_summary(tags=tags, values=values, name=scope)
_Collect(val, collections, [ops.GraphKeys.SUMMARIES])
return val
示例11: reduce_prod
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def reduce_prod(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the product of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.prod
@end_compatibility
"""
return gen_math_ops._prod(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
示例12: reduce_max
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def reduce_max(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the maximum of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.max
@end_compatibility
"""
return gen_math_ops._max(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
示例13: histogram_summary
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def histogram_summary(tag, values, collections=None, name=None):
# pylint: disable=line-too-long
"""Outputs a `Summary` protocol buffer with a histogram.
This ops is deprecated. Please switch to tf.summary.histogram.
For an explanation of why this op was deprecated, and information on how to
migrate, look ['here'](https://www.tensorflow.org/code/tensorflow/contrib/deprecated/__init__.py)
The generated
[`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
has one summary value containing a histogram for `values`.
This op reports an `InvalidArgument` error if any value is not finite.
Args:
tag: A `string` `Tensor`. 0-D. Tag to use for the summary value.
values: A real numeric `Tensor`. Any shape. Values to use to
build the histogram.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
name: A name for the operation (optional).
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
"""
with ops.name_scope(name, "HistogramSummary", [tag, values]) as scope:
val = gen_logging_ops._histogram_summary(
tag=tag, values=values, name=scope)
_Collect(val, collections, [ops.GraphKeys.SUMMARIES])
return val
示例14: scalar_summary
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def scalar_summary(tags, values, collections=None, name=None):
# pylint: disable=line-too-long
"""Outputs a `Summary` protocol buffer with scalar values.
This ops is deprecated. Please switch to tf.summary.scalar.
For an explanation of why this op was deprecated, and information on how to
migrate, look ['here'](https://www.tensorflow.org/code/tensorflow/contrib/deprecated/__init__.py)
The input `tags` and `values` must have the same shape. The generated
summary has a summary value for each tag-value pair in `tags` and `values`.
Args:
tags: A `string` `Tensor`. Tags for the summaries.
values: A real numeric Tensor. Values for the summaries.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
name: A name for the operation (optional).
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
"""
with ops.name_scope(name, "ScalarSummary", [tags, values]) as scope:
val = gen_logging_ops._scalar_summary(tags=tags, values=values, name=scope)
_Collect(val, collections, [ops.GraphKeys.SUMMARIES])
return val
示例15: test_static_fn_with_doc
# 需要導入模塊: from tensorflow.python.util import deprecation [as 別名]
# 或者: from tensorflow.python.util.deprecation import deprecated [as 別名]
def test_static_fn_with_doc(self, mock_warning):
date = "2016-07-04"
instructions = "This is how you update..."
@deprecation.deprecated(date, instructions)
def _fn(arg0, arg1):
"""fn doc.
Args:
arg0: Arg 0.
arg1: Arg 1.
Returns:
Sum of args.
"""
return arg0 + arg1
# Assert function docs are properly updated.
self.assertEqual("_fn", _fn.__name__)
self.assertEqual(
"fn doc. (deprecated)"
"\n"
"\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s."
"\nInstructions for updating:\n%s"
"\n"
"\n Args:"
"\n arg0: Arg 0."
"\n arg1: Arg 1."
"\n"
"\n Returns:"
"\n Sum of args."
"\n " % (date, instructions),
_fn.__doc__)
# Assert calling new fn issues log warning.
self.assertEqual(3, _fn(1, 2))
self.assertEqual(1, mock_warning.call_count)
(args, _) = mock_warning.call_args
self.assertRegexpMatches(args[0], r"deprecated and will be removed after")
self._assert_subset(set([date, instructions]), set(args[1:]))