本文整理匯總了Python中tensorflow.python.util.compat.integral_types方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.integral_types方法的具體用法?Python compat.integral_types怎麽用?Python compat.integral_types使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.util.compat
的用法示例。
在下文中一共展示了compat.integral_types方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __new__
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import integral_types [as 別名]
def __new__(cls, key):
if len(key) != 2:
raise ValueError("key must have size 2, got %s." % len(key))
if not isinstance(key[0], compat.integral_types) or not isinstance(
key[1], compat.integral_types):
raise TypeError("Invalid key %s. Must be unsigned integer values." % key)
return super(cls, StrongHashSpec).__new__(cls, "stronghash", key)
示例2: _FilterInt
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import integral_types [as 別名]
def _FilterInt(v):
if isinstance(v, (list, tuple)):
return _FirstNotNone([_FilterInt(x) for x in v])
return None if isinstance(v, compat.integral_types) else _NotNone(v)
示例3: sparse_row_envelope
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import integral_types [as 別名]
def sparse_row_envelope(sparse_input, row_axis=0, col_axis=1, name=None):
"""Returns the length of each 'row' in a `SparseTensor`.
For example, if `sparse_input` has indices `[[0,0], [2, 0], [2, 1], [2, 2]]`
and shape `[3, 3]`, this function will return `[1, 0, 3]`.
Args:
sparse_input: a `SparseTensor` of rank at least 2.
row_axis: An integer. The axis for the row of the envelope matrix. Default
is 0.
col_axis: An integer. The axis for the col of the envelope matrix. Default
is 1.
name: A name for the operation (optional).
Returns:
A one-dimensional `Tensor` whose entries correspond to the length of each
row of `SparseTensor`.
Raises:
ValueError: If row_axis and col_axis are the same axis or they are not
integers.
"""
if not (isinstance(row_axis, compat.integral_types) and
isinstance(col_axis, compat.integral_types)):
raise ValueError("`row_axis` and `col_axis` must be integers.")
if row_axis == col_axis:
raise ValueError("Row and column can not be the same axis.")
with ops.name_scope(name, "sparse_row_envelope", [sparse_input]):
indices = sparse_input.indices
row_indices = indices[:, row_axis]
col_indices = indices[:, col_axis]
num_rows = math_ops.cast(sparse_input.dense_shape[row_axis], dtypes.int32)
row_envelope = math_ops.unsorted_segment_max(
col_indices + 1, row_indices, num_rows, name=name)
zeros = array_ops.zeros_like(row_envelope)
return array_ops.where(row_envelope > zeros, row_envelope, zeros)
示例4: _FilterInt
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import integral_types [as 別名]
def _FilterInt(v):
if isinstance(v, (list, tuple)):
return _FirstNotNone([_FilterInt(x) for x in v])
return None if isinstance(v, (compat.integral_types,
tensor_shape.Dimension)) else _NotNone(v)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:7,代碼來源:tensor_util.py