本文整理匯總了Python中tensorflow.python.util.compat.as_str_any方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.as_str_any方法的具體用法?Python compat.as_str_any怎麽用?Python compat.as_str_any使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.util.compat
的用法示例。
在下文中一共展示了compat.as_str_any方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def __init__(self, handle, dtype, session):
"""Constructs a new tensor handle.
A tensor handle for a persistent tensor is a python string
that has the form of "tensor_name;unique_id;device_name".
Args:
handle: A tensor handle.
dtype: The data type of the tensor represented by `handle`.
session: The session in which the tensor is produced.
"""
self._handle = compat.as_str_any(handle)
self._resource_handle = None
self._dtype = dtype
self._session = session
self._auto_gc_enabled = True
示例2: get_summary_description
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def get_summary_description(node_def):
"""Given a TensorSummary node_def, retrieve its SummaryDescription.
When a Summary op is instantiated, a SummaryDescription of associated
metadata is stored in its NodeDef. This method retrieves the description.
Args:
node_def: the node_def_pb2.NodeDef of a TensorSummary op
Returns:
a summary_pb2.SummaryDescription
Raises:
ValueError: if the node is not a summary op.
"""
if node_def.op != 'TensorSummary':
raise ValueError("Can't get_summary_description on %s" % node_def.op)
description_str = _compat.as_str_any(node_def.attr['description'].s)
summary_description = SummaryDescription()
_json_format.Parse(description_str, summary_description)
return summary_description
示例3: get_matching_files
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def get_matching_files(filename):
"""Returns a list of files that match the given pattern.
Args:
filename: string, the pattern
Returns:
Returns a list of strings containing filenames that match the given pattern.
Raises:
errors.OpError: If there are filesystem / directory listing errors.
"""
with errors.raise_exception_on_not_ok_status() as status:
# Convert each element to string, since the return values of the
# vector of string should be interpreted as strings, not bytes.
return [compat.as_str_any(matching_filename)
for matching_filename in pywrap_tensorflow.GetMatchingFiles(
compat.as_bytes(filename), status)]
示例4: relu6
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def relu6(op, context):
input_name = make_tensor(op.inputs[0], context)
output_name = compat.as_str_any(op.outputs[0].name)
relu_output_name = 'relu_' + output_name
context.builder.add_activation(
relu_output_name, 'RELU', input_name, relu_output_name)
neg_output_name = relu_output_name + '_neg'
# negate it
context.builder.add_activation(
neg_output_name, 'LINEAR', relu_output_name, neg_output_name, [-1.0, 0])
# apply threshold
clip_output_name = relu_output_name + '_clip'
context.builder.add_unary(
clip_output_name, neg_output_name, clip_output_name, 'threshold',
alpha=-6.0)
# negate it back
context.builder.add_activation(
output_name, 'LINEAR', clip_output_name, output_name, [-1.0, 0])
context.translated[output_name] = True
示例5: product
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def product(op, context):
input_name = make_tensor(op.inputs[0], context)
output_name = compat.as_str_any(op.outputs[0].name)
start_ind = context.consts[op.inputs[1].name]
assert start_ind == 0, 'Prod: only start index = 0 case supported'
input_shape = context.shape_dict[input_name]
if len(input_shape) == 1:
axis = 'C'
else:
assert False, 'Reduce Sum axis case not handled currently'
mode = 'prod'
context.translated[output_name] = True
context.builder.add_reduce(output_name, input_name, output_name, axis, mode)
示例6: one_hot
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def one_hot(op, context):
input_name = compat.as_str_any(op.inputs[0].name)
output_name = compat.as_str_any(op.outputs[0].name)
depth = context.consts[compat.as_str_any(op.inputs[1].name)]
on_value = context.consts[compat.as_str_any(op.inputs[2].name)]
off_value = context.consts[compat.as_str_any(op.inputs[3].name)]
n_dims = depth
W = np.ones((depth, depth)) * off_value
for i in range(depth):
W[i, i] = on_value
context.builder.add_embedding(name=output_name,
W=W,
b=None,
input_dim=n_dims,
output_channels=n_dims,
has_bias=False,
input_name=input_name,
output_name=output_name)
context.translated[output_name] = True
示例7: lrn
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def lrn(op, context):
input_name = make_tensor(op.inputs[0], context)
output_name = compat.as_str_any(op.outputs[0].name)
input_shape = context.shape_dict[input_name]
C = input_shape[-1]
alpha = op.get_attr('alpha')
beta = op.get_attr('beta')
bias = op.get_attr('bias')
depth_radius = op.get_attr('depth_radius')
context.builder.add_lrn(output_name, input_name, output_name,
alpha=alpha * C,
beta=beta,
local_size=depth_radius,
k=bias)
context.translated[output_name] = True
示例8: identity
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def identity(op, context, input_name = None, input_id = 0):
is_network_output = False
for out in op.outputs:
if out.name in context.output_names:
is_network_output = True
break
if input_name is None:
input_name = compat.as_str_any(op.inputs[input_id].name)
for out in op.outputs:
output_name = compat.as_str_any(out.name)
if op.inputs[input_id].op.type != 'Const':
if is_network_output:
context.builder.add_activation(
output_name, 'LINEAR', input_name, output_name, [1.0, 0])
else:
skip(op, context)
context.translated[output_name] = True
示例9: _export_eval_result
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def _export_eval_result(self, eval_result, checkpoint_path,
is_the_final_export):
"""Export `eval_result` according to exporters in `EvalSpec`."""
export_dir_base = os.path.join(
compat.as_str_any(self._estimator.model_dir),
compat.as_str_any('export'))
for exporter in self._eval_spec.exporters:
exporter.export(
estimator=self._estimator,
export_path=os.path.join(
compat.as_str_any(export_dir_base),
compat.as_str_any(exporter.name)),
checkpoint_path=checkpoint_path,
eval_result=eval_result,
is_the_final_export=is_the_final_export)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:18,代碼來源:training.py
示例10: list_directory
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def list_directory(dirname):
"""Returns a list of entries contained within a directory.
The list is in arbitrary order. It does not contain the special entries "."
and "..".
Args:
dirname: string, path to a directory
Returns:
[filename1, filename2, ... filenameN] as strings
Raises:
errors.NotFoundError if directory doesn't exist
"""
if not is_directory(dirname):
raise errors.NotFoundError(None, None, "Could not find directory")
with errors.raise_exception_on_not_ok_status() as status:
# Convert each element to string, since the return values of the
# vector of string should be interpreted as strings, not bytes.
return [
compat.as_str_any(filename)
for filename in pywrap_tensorflow.GetChildren(
compat.as_bytes(dirname), status)
]
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:file_io.py
示例11: _get_device_name
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def _get_device_name(handle):
"""The device name encoded in the handle."""
handle_str = compat.as_str_any(handle)
return pydev.canonical_name(handle_str.split(";")[-1])
示例12: _prepare_value
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def _prepare_value(self, val):
if self._binary_mode:
return compat.as_bytes(val)
else:
return compat.as_str_any(val)
示例13: get_matching_files
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def get_matching_files(filename):
"""Returns a list of files that match the given pattern(s).
Args:
filename: string or iterable of strings. The glob pattern(s).
Returns:
A list of strings containing filenames that match the given pattern(s).
Raises:
errors.OpError: If there are filesystem / directory listing errors.
"""
with errors.raise_exception_on_not_ok_status() as status:
if isinstance(filename, six.string_types):
return [
# Convert the filenames to string from bytes.
compat.as_str_any(matching_filename)
for matching_filename in pywrap_tensorflow.GetMatchingFiles(
compat.as_bytes(filename), status)
]
else:
return [
# Convert the filenames to string from bytes.
compat.as_str_any(matching_filename)
for single_filename in filename
for matching_filename in pywrap_tensorflow.GetMatchingFiles(
compat.as_bytes(single_filename), status)
]
示例14: walk
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def walk(top, in_order=True):
"""Recursive directory tree generator for directories.
Args:
top: string, a Directory name
in_order: bool, Traverse in order if True, post order if False.
Errors that happen while listing directories are ignored.
Yields:
Each yield is a 3-tuple: the pathname of a directory, followed by lists of
all its subdirectories and leaf files.
(dirname, [subdirname, subdirname, ...], [filename, filename, ...])
as strings
"""
top = compat.as_str_any(top)
try:
listing = list_directory(top)
except errors.NotFoundError:
return
files = []
subdirs = []
for item in listing:
full_path = os.path.join(top, item)
if is_directory(full_path):
subdirs.append(item)
else:
files.append(item)
here = (top, subdirs, files)
if in_order:
yield here
for subdir in subdirs:
for subitem in walk(os.path.join(top, subdir), in_order):
yield subitem
if not in_order:
yield here
示例15: IsTensorFlowEventsFile
# 需要導入模塊: from tensorflow.python.util import compat [as 別名]
# 或者: from tensorflow.python.util.compat import as_str_any [as 別名]
def IsTensorFlowEventsFile(path):
"""Check the path name to see if it is probably a TF Events file.
Args:
path: A file path to check if it is an event file.
Raises:
ValueError: If the path is an empty string.
Returns:
If path is formatted like a TensorFlowEventsFile.
"""
if not path:
raise ValueError('Path must be a nonempty string')
return 'tfevents' in compat.as_str_any(os.path.basename(path))