本文整理匯總了Python中tensorflow.python.training.training_ops.resource_apply_gradient_descent方法的典型用法代碼示例。如果您正苦於以下問題:Python training_ops.resource_apply_gradient_descent方法的具體用法?Python training_ops.resource_apply_gradient_descent怎麽用?Python training_ops.resource_apply_gradient_descent使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.training.training_ops
的用法示例。
在下文中一共展示了training_ops.resource_apply_gradient_descent方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _resource_apply_dense
# 需要導入模塊: from tensorflow.python.training import training_ops [as 別名]
# 或者: from tensorflow.python.training.training_ops import resource_apply_gradient_descent [as 別名]
def _resource_apply_dense(self, grad, var):
momentum_buffer = self.get_slot(var, "momentum")
learning_rate = math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype)
momentum = math_ops.cast(self._momentum_tensor, var.dtype.base_dtype)
nu = math_ops.cast(self._nu_tensor, var.dtype.base_dtype)
momentum_op = training_ops.resource_apply_momentum(
var.handle,
momentum_buffer.handle,
nu * (1.0 - momentum) * learning_rate,
grad,
momentum,
use_locking=self._use_locking,
use_nesterov=False,
)
with ops.control_dependencies([momentum_op]):
gd_op = training_ops.resource_apply_gradient_descent(
var.handle, (1.0 - nu) * learning_rate, grad, use_locking=self._use_locking
)
return control_flow_ops.group(momentum_op, gd_op)
示例2: _resource_apply_dense
# 需要導入模塊: from tensorflow.python.training import training_ops [as 別名]
# 或者: from tensorflow.python.training.training_ops import resource_apply_gradient_descent [as 別名]
def _resource_apply_dense(self, grad, handle):
return training_ops.resource_apply_gradient_descent(
handle.handle, math_ops.cast(self._learning_rate_tensor,
grad.dtype.base_dtype),
grad, use_locking=self._use_locking)
示例3: _resource_apply_dense
# 需要導入模塊: from tensorflow.python.training import training_ops [as 別名]
# 或者: from tensorflow.python.training.training_ops import resource_apply_gradient_descent [as 別名]
def _resource_apply_dense(self, grad, handle):
return training_ops.resource_apply_gradient_descent(
handle, math_ops.cast(self._learning_rate_tensor,
grad.dtype.base_dtype),
grad, use_locking=self._use_locking)