本文整理匯總了Python中tensorflow.python.training.slot_creator.create_zeros_slot方法的典型用法代碼示例。如果您正苦於以下問題:Python slot_creator.create_zeros_slot方法的具體用法?Python slot_creator.create_zeros_slot怎麽用?Python slot_creator.create_zeros_slot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.training.slot_creator
的用法示例。
在下文中一共展示了slot_creator.create_zeros_slot方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _zeros_slot
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def _zeros_slot(self, var, slot_name, op_name):
"""Find or create a slot initialized with 0.0.
Args:
var: A `Variable` object.
slot_name: Name for the slot.
op_name: Name to use when scoping the Variable that
needs to be created for the slot.
Returns:
A `Variable` object.
"""
named_slots = self._slot_dict(slot_name)
if _var_key(var) not in named_slots:
named_slots[_var_key(var)] = slot_creator.create_zeros_slot(var, op_name)
return named_slots[_var_key(var)]
示例2: _zeros_slot
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def _zeros_slot(self, var, slot_name, op_name):
"""Find or create a slot initialized with 0.0.
Args:
var: A `Variable` object.
slot_name: Name for the slot.
op_name: Name to use when scoping the Variable that
needs to be created for the slot.
Returns:
A `Variable` object.
"""
named_slots = self._slot_dict(slot_name)
if var not in named_slots:
named_slots[var] = slot_creator.create_zeros_slot(var, op_name)
return named_slots[var]
示例3: _zeros_slot
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def _zeros_slot(self, var, slot_name, op_name):
"""Find or create a slot initialized with 0.0.
Args:
var: A `Variable` object.
slot_name: Name for the slot.
op_name: Name to use when scoping the Variable that
needs to be created for the slot.
Returns:
A `Variable` object.
"""
named_slots = self._slot_dict(slot_name)
if _var_key(var) not in named_slots:
named_slots[_var_key(var)] = slot_creator.create_zeros_slot(var, op_name)
return named_slots[_var_key(var)]
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:18,代碼來源:optimizer.py
示例4: _zeros_slot
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def _zeros_slot(self, var, slot_name, op_name):
named_slots = self._slot_dict(slot_name)
if var not in named_slots:
named_slots[var] = slot_creator.create_zeros_slot(var, op_name)
return named_slots[var]
# TODO: in RMSProp native code, memcpy() (for CPU) and
# cudaMemcpyAsync() (for GPU) are used when updating values,
# and values might tend to be overwritten with results from other threads.
# (Need to check the learning performance with replacing it)
示例5: testCreateZerosSlotFromVariable
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def testCreateZerosSlotFromVariable(self):
with self.test_session():
v = tf.Variable([1.0, 2.5], name="var")
with tf.control_dependencies(None):
slot = slot_creator.create_zeros_slot(v, name="slot", dtype=tf.float64)
tf.global_variables_initializer().run()
self.assertEqual(slot.op.name, "var/slot")
self.assertEqual(slot.get_shape().as_list(), [2])
self.assertEqual(slot.dtype.base_dtype, tf.float64)
self.assertAllEqual(slot.eval(), [0.0, 0.0])
示例6: testCreateZerosSlotFromTensor
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def testCreateZerosSlotFromTensor(self):
with self.test_session():
v = tf.constant([1.0, 2.5], name="const")
with tf.control_dependencies(None):
slot = slot_creator.create_zeros_slot(v, name="slot")
tf.global_variables_initializer().run()
self.assertEqual(slot.op.name, "const/slot")
self.assertEqual(slot.get_shape().as_list(), [2])
self.assertEqual(slot.dtype.base_dtype, tf.float32)
self.assertAllEqual(slot.eval(), [0.0, 0.0])
示例7: _zeros_slot
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def _zeros_slot(self, var, slot_name, op_name):
named_slots = self._slot_dict(slot_name)
if var not in named_slots:
named_slots[var] = slot_creator.create_zeros_slot(var, op_name)
return named_slots[var]
# TODO: in RMSProp native code, memcpy() (for CPU) and
# cudaMemcpyAsync() (for GPU) are used when updating values,
# and values might tend to be overwritten with results from other threads.
# (Need to check the learning performance with replacing it)
示例8: _apply_sparse_shared
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
beta1_weight, beta2_weight = self._get_beta_weights()
learning_rate_tensor = math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype)
beta1_tensor = math_ops.cast(self._beta1_tensor, var.dtype.base_dtype)
beta2_tensor = math_ops.cast(self._beta2_tensor, var.dtype.base_dtype)
nu1_tensor = math_ops.cast(self._nu1_tensor, var.dtype.base_dtype)
nu2_tensor = math_ops.cast(self._nu2_tensor, var.dtype.base_dtype)
epsilon_tensor = math_ops.cast(self._epsilon_tensor, var.dtype.base_dtype)
beta1_weight = math_ops.cast(beta1_weight, var.dtype.base_dtype) * beta1_tensor + 1.0
beta2_weight = math_ops.cast(beta2_weight, var.dtype.base_dtype) * beta2_tensor + 1.0
beta1_adj = 1.0 - (1.0 / beta1_weight)
beta2_adj = 1.0 - (1.0 / beta2_weight)
exp_avg = self.get_slot(var, "exp_avg")
exp_avg_sq = self.get_slot(var, "exp_avg_sq")
grad_sq = grad * grad
exp_avg_tensor = state_ops.assign(exp_avg, beta1_adj * exp_avg, use_locking=self._use_locking)
with ops.control_dependencies([exp_avg_tensor]):
exp_avg_tensor = scatter_add(exp_avg, indices, (1.0 - beta1_adj) * grad)
exp_avg_sq_tensor = state_ops.assign(exp_avg_sq, beta2_adj * exp_avg_sq, use_locking=self._use_locking)
with ops.control_dependencies([exp_avg_sq_tensor]):
exp_avg_sq_tensor = scatter_add(exp_avg_sq, indices, (1.0 - beta2_adj) * grad_sq)
avg_grad = slot_creator.create_zeros_slot(var, self._name)
avg_grad_tensor = state_ops.assign(avg_grad, nu1_tensor * exp_avg_tensor, use_locking=self._use_locking)
with ops.control_dependencies([avg_grad_tensor]):
avg_grad_tensor = scatter_add(avg_grad, indices, (1.0 - nu1_tensor) * grad)
avg_grad_sq = slot_creator.create_zeros_slot(var, self._name)
avg_grad_sq_tensor = state_ops.assign(
avg_grad_sq, nu2_tensor * exp_avg_sq_tensor, use_locking=self._use_locking
)
with ops.control_dependencies([avg_grad_sq_tensor]):
avg_grad_sq_tensor = scatter_add(avg_grad_sq, indices, (1.0 - nu2_tensor) * grad_sq)
avg_grad_rms_tensor = math_ops.sqrt(avg_grad_sq_tensor)
var_update = state_ops.assign_add(
var,
-learning_rate_tensor * avg_grad_tensor / (avg_grad_rms_tensor + epsilon_tensor),
use_locking=self._use_locking,
)
return control_flow_ops.group(*[var_update, exp_avg_tensor, exp_avg_sq_tensor])
示例9: apply
# 需要導入模塊: from tensorflow.python.training import slot_creator [as 別名]
# 或者: from tensorflow.python.training.slot_creator import create_zeros_slot [as 別名]
def apply(self, var_list=None):
if var_list is None:
var_list = variables.trainable_variables()
for var in var_list:
if var.dtype.base_dtype not in [dtypes.float16, dtypes.float32,
dtypes.float64]:
raise TypeError("The variables must be half, float, or double: %s" %
var.name)
if var not in self._averages:
# For variables: to lower communication bandwidth across devices we keep
# the moving averages on the same device as the variables. For other
# tensors, we rely on the existing device allocation mechanism.
with ops.init_scope():
if isinstance(var, variables.Variable):
avg = slot_creator.create_slot(var,
var.initialized_value(),
self.name,
colocate_with_primary=True)
# NOTE(mrry): We only add `tf.Variable` objects to the
# `MOVING_AVERAGE_VARIABLES` collection.
ops.add_to_collection(ops.GraphKeys.MOVING_AVERAGE_VARIABLES, var)
else:
avg = slot_creator.create_zeros_slot(
var,
self.name,
colocate_with_primary=(var.op.type in ["Variable",
"VariableV2",
"VarHandleOp"]))
self._averages[var] = avg
with ops.device('/cpu:0'):
self._n_models = variable_scope.get_variable(shape=[],
dtype=dtypes.float32,
name='n_models',
initializer=init_ops.constant_initializer(0.),
trainable=False)
with ops.name_scope(self.name) as scope:
updates = []
for var in var_list:
updates.append(assign_stochastic_average(self._averages[var], var, self._n_models))
with ops.control_dependencies(updates):
update_n_models = state_ops.assign_add(self._n_models, 1., name=scope)
return update_n_models