本文整理匯總了Python中tensorflow.python.training.queue_runner.start_queue_runners方法的典型用法代碼示例。如果您正苦於以下問題:Python queue_runner.start_queue_runners方法的具體用法?Python queue_runner.start_queue_runners怎麽用?Python queue_runner.start_queue_runners使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.training.queue_runner
的用法示例。
在下文中一共展示了queue_runner.start_queue_runners方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_session
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def create_session(self):
"""Creates a coordinated session."""
# Keep the tf_sess for unit testing.
self.tf_sess = self._session_creator.create_session()
# We don't want coordinator to suppress any exception.
self.coord = coordinator.Coordinator(clean_stop_exception_types=[])
queue_runner.start_queue_runners(sess=self.tf_sess, coord=self.coord)
# Inform the hooks that a new session has been created.
for hook in self._hooks:
hook.after_create_session(self.tf_sess, self.coord)
return _CoordinatedSession(
_HookedSession(self.tf_sess, self._hooks), self.coord,
self._stop_grace_period_secs)
示例2: create_session
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def create_session(self):
"""Creates a coordinated session."""
# Keep the tf_sess for unit testing.
self.tf_sess = self._session_creator.create_session()
# We don't want coordinator to suppress any exception.
self.coord = coordinator.Coordinator(clean_stop_exception_types=[])
queue_runner.start_queue_runners(sess=self.tf_sess, coord=self.coord)
# Inform the hooks that a new session has been created.
for hook in self._hooks:
hook.after_create_session(self.tf_sess, self.coord)
return _CoordinatedSession(
_HookedSession(self.tf_sess, self._hooks), self.coord)
示例3: create_session
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def create_session(self):
"""Creates a coordinated session."""
# Keep the tf_sess for unit testing.
self.tf_sess = self._session_creator.create_session()
# We don't want coordinator to suppress any exception.
self.coord = coordinator.Coordinator(clean_stop_exception_types=[])
queue_runner.start_queue_runners(sess=self.tf_sess, coord=self.coord)
return _CoordinatedSession(
_HookedSession(self.tf_sess, self._hooks), self.coord)
示例4: run
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def run(self,
num_batches=None,
graph=None,
session=None,
start_queues=True,
initialize_variables=True,
**kwargs):
"""Builds and runs the columns of the `DataFrame` and yields batches.
This is a generator that yields a dictionary mapping column names to
evaluated columns.
Args:
num_batches: the maximum number of batches to produce. If none specified,
the returned value will iterate through infinite batches.
graph: the `Graph` in which the `DataFrame` should be built.
session: the `Session` in which to run the columns of the `DataFrame`.
start_queues: if true, queues will be started before running and halted
after producting `n` batches.
initialize_variables: if true, variables will be initialized.
**kwargs: Additional keyword arguments e.g. `num_epochs`.
Yields:
A dictionary, mapping column names to the values resulting from running
each column for a single batch.
"""
if graph is None:
graph = ops.get_default_graph()
with graph.as_default():
if session is None:
session = sess.Session()
self_built = self.build(**kwargs)
keys = list(self_built.keys())
cols = list(self_built.values())
if initialize_variables:
if variables.local_variables():
session.run(variables.local_variables_initializer())
if variables.global_variables():
session.run(variables.global_variables_initializer())
if start_queues:
coord = coordinator.Coordinator()
threads = qr.start_queue_runners(sess=session, coord=coord)
i = 0
while num_batches is None or i < num_batches:
i += 1
try:
values = session.run(cols)
yield collections.OrderedDict(zip(keys, values))
except errors.OutOfRangeError:
break
if start_queues:
coord.request_stop()
coord.join(threads)
示例5: run_feeds_iter
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None):
"""Run `output_dict` tensors with each input in `feed_dicts`.
If `restore_checkpoint_path` is supplied, restore from checkpoint. Otherwise,
init all variables.
Args:
output_dict: A `dict` mapping string names to `Tensor` objects to run.
Tensors must all be from the same graph.
feed_dicts: Iterable of `dict` objects of input values to feed.
restore_checkpoint_path: A string containing the path to a checkpoint to
restore.
Yields:
A sequence of dicts of values read from `output_dict` tensors, one item
yielded for each item in `feed_dicts`. Keys are the same as `output_dict`,
values are the results read from the corresponding `Tensor` in
`output_dict`.
Raises:
ValueError: if `output_dict` or `feed_dicts` is None or empty.
"""
if not output_dict:
raise ValueError('output_dict is invalid: %s.' % output_dict)
if not feed_dicts:
raise ValueError('feed_dicts is invalid: %s.' % feed_dicts)
graph = contrib_ops.get_graph_from_inputs(output_dict.values())
with graph.as_default() as g:
with tf_session.Session('') as session:
session.run(
resources.initialize_resources(resources.shared_resources() +
resources.local_resources()))
if restore_checkpoint_path:
_restore_from_checkpoint(session, g, restore_checkpoint_path)
else:
session.run(variables.global_variables_initializer())
session.run(variables.local_variables_initializer())
session.run(lookup_ops.tables_initializer())
coord = coordinator.Coordinator()
threads = None
try:
threads = queue_runner.start_queue_runners(session, coord=coord)
for f in feed_dicts:
yield session.run(output_dict, f)
finally:
coord.request_stop()
if threads:
coord.join(threads, stop_grace_period_secs=120)
示例6: run_feeding_forever
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def run_feeding_forever(self,
sess_callback,
outer_coordinator=None,
tolerator=None,
start_queue_runners=True):
"""Runs feeding forever.
This method exits only if `outer_coordinator` has a stop requested
or if a remote feed encounters an un-tolerated error. The most
likely cause of `outer_coordinator` stopping besides a manual call
to `request_stop()` is a `QueueRunner` thread reaching the end of
its queue or encountering an error.
Returns only after joining `outer_coordinator`.
Args:
sess_callback: A function which, when called, returns a Session
to use for feeding. Can be called multiple times due to retries.
outer_coordinator: If present, a `Coordinator` which the feeding
process will respect. Will be created if omitted.
tolerator: If present, a `failure_tolerator.FailureTolerator` which is
used to manage retries of feeding the remote devices.
start_queue_runners: Whether to start queue runners before
beginning to feed the remote devices. Defaults to True. If
False and no other mechanism is used to start queue runners, this
method will hang forever without doing work.
"""
# We use /two/ coordinators: one which runs normal queue
# runners (outer_coordinator), and one which runs the remote
# enqueues (using an inner coordinator) with retries and failure
# tolerance. By using two coordinators, errors
# encountered while running the remote enqueue ops don't cause the
# outer_coordinator to be shut down.
if outer_coordinator is None:
outer_coordinator = coordinator.Coordinator()
# Start the outer queue runners:
if start_queue_runners:
session = sess_callback()
# Work around b/32749157 by running an operation before proceeding --
# this way the session used for queue runners will be fully established
# before we create another session with the same target.
session.run(self._fake_op)
queue_runner.start_queue_runners(sess=session,
coord=outer_coordinator)
if self._num_remote_feeds == 0:
self._feeding_event.set()
outer_coordinator.join()
return
else:
try:
self._feed_remote_queues_forever(
sess_callback, outer_coordinator, tolerator)
finally:
self._feeding_event.set()
outer_coordinator.join()
示例7: _feed_remote_queues_forever
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def _feed_remote_queues_forever(
self, sess_callback, outer_coordinator, tolerator):
if tolerator is None:
tolerator = failure_tolerator.FailureTolerator(limit=5)
# In a retry loop, keep the remote queue runners going:
while True:
if outer_coordinator.should_stop():
return
inner_coordinator = coordinator.Coordinator()
# Make sure inner_coordinator stops when outer_coordinator does:
_link_coordinators(inner_coordinator, outer_coordinator)
# Create a fresh session to use for remote queues:
inner_session = sess_callback()
inner_session.run(self._fake_op) # Work around b/32749157, as above
queue_runner.start_queue_runners(sess=inner_session,
coord=inner_coordinator,
collection=Feeder.REMOTE_QUEUE_RUNNERS)
self._feeding_event.set() # Notify that feeding has begun
try:
with tolerator.forgive():
# Wait for a stop to be requested.
inner_coordinator.wait_for_stop()
# TODO(shoutis): If outer_coordinator.should_stop(), it
# would be nice to interrupt the remote queue runners (which
# may be blocked if their remote queue is full) -- but
# there's no way currently; see b/32774422.
# Cause any exceptions from the remote queue runners to be
# reraised immediately, without waiting for their associated
# threads to terminate like join() would. This means a retry
# can begin immediately after any remote device fails,
# rather than having to wait for any pending enqueues to
# other remote devices to finish first.
inner_coordinator.raise_requested_exception()
# If this line is reached, there was a graceful shutdown
# requested.
# Request the outer coordinator to stop. Since
# outer_coordinator.request_stop() is the currently only way
# for inner_coordinator() to finish without failure, this is
# redundant, but it's harmless and defends against infinite
# hangs should code changes make it possible for
# inner_coordinator to finish in other ways.
outer_coordinator.request_stop()
return
except Exception as e:
# Pass non-forgiven errors along to outer_coordinator:
outer_coordinator.request_stop(e)
raise
示例8: run_feeds_iter
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None):
"""Run `output_dict` tensors with each input in `feed_dicts`.
If `restore_checkpoint_path` is supplied, restore from checkpoint. Otherwise,
init all variables.
Args:
output_dict: A `dict` mapping string names to `Tensor` objects to run.
Tensors must all be from the same graph.
feed_dicts: Iterable of `dict` objects of input values to feed.
restore_checkpoint_path: A string containing the path to a checkpoint to
restore.
Yields:
A sequence of dicts of values read from `output_dict` tensors, one item
yielded for each item in `feed_dicts`. Keys are the same as `output_dict`,
values are the results read from the corresponding `Tensor` in
`output_dict`.
Raises:
ValueError: if `output_dict` or `feed_dicts` is None or empty.
"""
if not output_dict:
raise ValueError('output_dict is invalid: %s.' % output_dict)
if not feed_dicts:
raise ValueError('feed_dicts is invalid: %s.' % feed_dicts)
graph = contrib_ops.get_graph_from_inputs(output_dict.values())
with graph.as_default() as g:
with tf_session.Session('') as session:
session.run(
resources.initialize_resources(resources.shared_resources() +
resources.local_resources()))
if restore_checkpoint_path:
_restore_from_checkpoint(session, g, restore_checkpoint_path)
else:
session.run(variables.global_variables_initializer())
session.run(variables.local_variables_initializer())
session.run(data_flow_ops.tables_initializer())
coord = coordinator.Coordinator()
threads = None
try:
threads = queue_runner.start_queue_runners(session, coord=coord)
for f in feed_dicts:
yield session.run(output_dict, f)
finally:
coord.request_stop()
if threads:
coord.join(threads, stop_grace_period_secs=120)
示例9: run_feeds_iter
# 需要導入模塊: from tensorflow.python.training import queue_runner [as 別名]
# 或者: from tensorflow.python.training.queue_runner import start_queue_runners [as 別名]
def run_feeds_iter(output_dict, feed_dicts, restore_checkpoint_path=None):
"""Run `output_dict` tensors with each input in `feed_dicts`.
If `restore_checkpoint_path` is supplied, restore from checkpoint. Otherwise,
init all variables.
Args:
output_dict: A `dict` mapping string names to `Tensor` objects to run.
Tensors must all be from the same graph.
feed_dicts: Iterable of `dict` objects of input values to feed.
restore_checkpoint_path: A string containing the path to a checkpoint to
restore.
Yields:
A sequence of dicts of values read from `output_dict` tensors, one item
yielded for each item in `feed_dicts`. Keys are the same as `output_dict`,
values are the results read from the corresponding `Tensor` in
`output_dict`.
Raises:
ValueError: if `output_dict` or `feed_dicts` is None or empty.
"""
if not output_dict:
raise ValueError('output_dict is invalid: %s.' % output_dict)
if not feed_dicts:
raise ValueError('feed_dicts is invalid: %s.' % feed_dicts)
graph = contrib_ops.get_graph_from_inputs(output_dict.values())
with graph.as_default() as g:
with tf_session.Session('') as session:
session.run(
resources.initialize_resources(resources.shared_resources() +
resources.local_resources()))
if restore_checkpoint_path:
_restore_from_checkpoint(session, g, restore_checkpoint_path)
else:
session.run(variables.global_variables_initializer())
session.run(variables.local_variables_initializer())
session.run(data_flow_ops.initialize_all_tables())
coord = coordinator.Coordinator()
threads = None
try:
threads = queue_runner.start_queue_runners(session, coord=coord)
for f in feed_dicts:
yield session.run(output_dict, f)
finally:
coord.request_stop()
if threads:
coord.join(threads, stop_grace_period_secs=120)