當前位置: 首頁>>代碼示例>>Python>>正文


Python moving_averages.assign_moving_average方法代碼示例

本文整理匯總了Python中tensorflow.python.training.moving_averages.assign_moving_average方法的典型用法代碼示例。如果您正苦於以下問題:Python moving_averages.assign_moving_average方法的具體用法?Python moving_averages.assign_moving_average怎麽用?Python moving_averages.assign_moving_average使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.training.moving_averages的用法示例。


在下文中一共展示了moving_averages.assign_moving_average方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_and_apply_batch_norm

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def create_and_apply_batch_norm(self, inp, n_features, decay, tower_setup, scope_name="bn"):
    beta, gamma, moving_mean, moving_var = create_batch_norm_vars(n_features, tower_setup, scope_name)
    self.n_params += 2 * n_features
    if tower_setup.is_main_train_tower:
      assert tower_setup.is_training
    if tower_setup.is_training and not tower_setup.freeze_batchnorm:
      xn, batch_mean, batch_var = tf.nn.fused_batch_norm(inp, gamma, beta, epsilon=Layer.BATCH_NORM_EPSILON,
                                                         is_training=True)
      if tower_setup.is_main_train_tower:
        update_op1 = moving_averages.assign_moving_average(
          moving_mean, batch_mean, decay, zero_debias=False, name='mean_ema_op')
        update_op2 = moving_averages.assign_moving_average(
          moving_var, batch_var, decay, zero_debias=False, name='var_ema_op')
        self.update_ops.append(update_op1)
        self.update_ops.append(update_op2)
      return xn
    else:
      xn = tf.nn.batch_normalization(inp, moving_mean, moving_var, beta, gamma, Layer.BATCH_NORM_EPSILON)
      return xn 
開發者ID:tobiasfshr,項目名稱:MOTSFusion,代碼行數:21,代碼來源:Layer.py

示例2: moving_average_update

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def moving_average_update(x, value, momentum):
    """Compute the moving average of a variable.

    # Arguments
        x: A `Variable`.
        value: A tensor with the same shape as `x`.
        momentum: The moving average momentum.

    # Returns
        An operation to update the variable.
    """
    return moving_averages.assign_moving_average(
        x, value, momentum, zero_debias=True)


# LINEAR ALGEBRA 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:tensorflow_backend.py

示例3: _adaptive_max_norm

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
  """Find max_norm given norm and previous average."""
  with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
    log_norm = math_ops.log(norm + epsilon)

    def moving_average(name, value, decay):
      moving_average_variable = vs.get_variable(
          name, shape=value.get_shape(), dtype=value.dtype,
          initializer=init_ops.zeros_initializer, trainable=False)
      return moving_averages.assign_moving_average(
          moving_average_variable, value, decay, zero_debias=False)

    # quicker adaptation at the beginning
    if global_step is not None:
      n = math_ops.to_float(global_step)
      decay = math_ops.minimum(decay, n / (n + 1.))

    # update averages
    mean = moving_average("mean", log_norm, decay)
    sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)

    variance = sq_mean - math_ops.square(mean)
    std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
    max_norms = math_ops.exp(mean + std_factor*std)
    return max_norms, mean 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:optimizers.py

示例4: batch_normalization

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def batch_normalization(incoming, is_training, beta=0.0, gamma=1.0, epsilon=1e-5, decay=0.9):
  shape = incoming.get_shape()
  dimensions_num = len(shape)
  axis = list(range(dimensions_num - 1))

  with tf.variable_scope('batchnorm'):
    beta = tf.Variable(initial_value=tf.ones(shape=[shape[-1]]) * beta, name='beta')
    gamma = tf.Variable(initial_value=tf.ones(shape=[shape[-1]]) * gamma, name='gamma')

    moving_mean = tf.Variable(initial_value=tf.zeros(shape=shape[-1:]), trainable=False, name='moving_mean')
    moving_variance = tf.Variable(initial_value=tf.zeros(shape=shape[-1:]), trainable=False, name='moving_variance')

  def update_mean_var():
    mean, variance = tf.nn.moments(incoming, axis)
    update_moving_mean = moving_averages.assign_moving_average(moving_mean, mean, decay)
    update_moving_variance = moving_averages.assign_moving_average(moving_variance, variance, decay)
    with tf.control_dependencies([update_moving_mean, update_moving_variance]):
      return tf.identity(mean), tf.identity(variance)

  mean, var = tf.cond(is_training, update_mean_var, lambda: (moving_mean, moving_variance))
  inference = tf.nn.batch_normalization(incoming, mean, var, beta, gamma, epsilon)
  inference.set_shape(shape)
  return inference 
開發者ID:maxim5,項目名稱:time-series-machine-learning,代碼行數:25,代碼來源:nn_ops.py

示例5: batch_normalization

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def batch_normalization(input, trainable, name, **kwargs):
    input_shape = input.get_shape()
    shape = input_shape.as_list()[-1::]
    axis = list(range(len(input_shape) - 1))
    moving_mean = tf.get_variable(shape=shape, initializer=tf.zeros_initializer, trainable=trainable, name=name + "_mean")
    moving_variance = tf.get_variable(shape=shape, initializer=tf.ones_initializer, trainable=trainable, name=name + "_var")
    offset = tf.get_variable(shape=shape, initializer=tf.zeros_initializer, trainable=trainable, name=name + "_bias")
    scale = tf.get_variable(shape=shape, initializer=tf.ones_initializer, trainable=trainable, name=name + "_scale") if name != 'fc1' else None

    mean, variance = tf.nn.moments(input, axis)
    update_moving_mean = moving_averages.assign_moving_average(moving_mean, mean, BN_DECAY)
    update_moving_variance = moving_averages.assign_moving_average(moving_variance, variance, BN_DECAY)
    tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_mean)
    tf.add_to_collection(UPDATE_OPS_COLLECTION, update_moving_variance)
    is_training = tf.convert_to_tensor(trainable, dtype='bool', name='is_training')
    mean, variance = control_flow_ops.cond(is_training,
        lambda: (mean, variance),
        lambda: (moving_mean, moving_variance))

    return tf.nn.batch_normalization(input, mean, variance, offset, scale, name=name, **kwargs) 
開發者ID:yangxue0827,項目名稱:MobileFaceNet_Tensorflow,代碼行數:22,代碼來源:L_Resnet_E_IR.py

示例6: update_bn_ema

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def update_bn_ema(xn, batch_mean, batch_var,
                  moving_mean, moving_var, decay, internal_update):
    update_op1 = moving_averages.assign_moving_average(
        moving_mean, batch_mean, decay, zero_debias=False,
        name='mean_ema_op')
    update_op2 = moving_averages.assign_moving_average(
        moving_var, batch_var, decay, zero_debias=False,
        name='var_ema_op')

    if internal_update:
        with tf.control_dependencies([update_op1, update_op2]):
            return tf.identity(xn, name='output')
    else:
        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_op1)
        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_op2)
        return tf.identity(xn, name='output') 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:18,代碼來源:_old_batch_norm.py

示例7: get_output_for

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def get_output_for(self, input, phase='train', **kwargs):
        if phase == 'train':
            # Calculate the moments based on the individual batch.
            mean, variance = tf.nn.moments(input, self.axis, shift=self.moving_mean)
            # Update the moving_mean and moving_variance moments.
            update_moving_mean = moving_averages.assign_moving_average(
                self.moving_mean, mean, self.decay)
            update_moving_variance = moving_averages.assign_moving_average(
                self.moving_variance, variance, self.decay)
            # Make sure the updates are computed here.
            with tf.control_dependencies([update_moving_mean,
                                          update_moving_variance]):
                output = tf.nn.batch_normalization(
                    input, mean, variance, self.beta, self.gamma, self.epsilon)
        else:
            output = tf.nn.batch_normalization(
                input, self.moving_mean, self.moving_variance, self.beta, self.gamma, self.epsilon)
        output.set_shape(self.input_shape)
        return output 
開發者ID:freelunchtheorem,項目名稱:Conditional_Density_Estimation,代碼行數:21,代碼來源:layers.py

示例8: batch_normalization

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def batch_normalization(self, input, name):
        with tf.variable_scope(name):
            bn_input_shape = input.get_shape() 
            moving_mean = tf.get_variable(name+'_mean', bn_input_shape[-1:] , initializer=tf.zeros_initializer, trainable=False)
            moving_variance = tf.get_variable(name+'_variance', bn_input_shape[-1:] , initializer=tf.ones_initializer, trainable=False)
            def mean_var_with_update():
                mean, variance = tf.nn.moments(input, list(range(len(bn_input_shape) - 1)), name=name+'_moments')
                with tf.control_dependencies([assign_moving_average(moving_mean, mean, self.conv_bn_decay),assign_moving_average(moving_variance, variance, self.conv_bn_decay)]):
                    return tf.identity(mean), tf.identity(variance)
            #mean, variance = tf.cond(tf.cast(self.isTraining, tf.bool), mean_var_with_update, lambda: (moving_mean, moving_variance))
            mean, variance = tf.cond(tf.cast(True, tf.bool), mean_var_with_update, lambda: (moving_mean, moving_variance))
            beta = tf.get_variable(name+'_beta', bn_input_shape[-1:] , initializer=tf.zeros_initializer)
            gamma = tf.get_variable(name+'_gamma', bn_input_shape[-1:] , initializer=tf.ones_initializer)
            return tf.nn.batch_normalization(input, mean, variance, beta, gamma, self.conv_bn_epsilon, name+'_bn_opt')
    
    # smooth_L1 算法 
開發者ID:lslcode,項目名稱:SSD_for_Tensorflow,代碼行數:18,代碼來源:ssd300.py

示例9: moving_average_update

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def moving_average_update(x, value, momentum):
    """Compute the moving average of a variable.

    # Arguments
        x: A `Variable`.
        value: A tensor with the same shape as `x`.
        momentum: The moving average momentum.

    # Returns
        An operation to update the variable.
    """
    return moving_averages.assign_moving_average(
        x, value, momentum, zero_debias=False)


# LINEAR ALGEBRA 
開發者ID:sheffieldnlp,項目名稱:deepQuest,代碼行數:18,代碼來源:tensorflow_backend.py

示例10: vq_discrete_bottleneck

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def vq_discrete_bottleneck(x, hparams):
  """Simple vector quantized discrete bottleneck."""
  tf.logging.info("Using EMA with beta = {}".format(hparams.beta))
  bottleneck_size = 2**hparams.bottleneck_bits
  x_shape = common_layers.shape_list(x)
  x = tf.reshape(x, [-1, hparams.hidden_size])
  x_means_hot, e_loss = vq_nearest_neighbor(
      x, hparams)
  means, ema_means, ema_count = (hparams.means, hparams.ema_means,
                                 hparams.ema_count)

  # Update the ema variables
  updated_ema_count = moving_averages.assign_moving_average(
      ema_count,
      tf.reduce_sum(x_means_hot, axis=0),
      hparams.decay,
      zero_debias=False)

  dw = tf.matmul(x_means_hot, x, transpose_a=True)
  updated_ema_means = moving_averages.assign_moving_average(
      ema_means, dw, hparams.decay, zero_debias=False)
  n = tf.reduce_sum(updated_ema_count, axis=-1, keepdims=True)
  updated_ema_count = (
      (updated_ema_count + hparams.epsilon) /
      (n + bottleneck_size * hparams.epsilon) * n)
  # pylint: disable=g-no-augmented-assignment
  updated_ema_means = updated_ema_means / tf.expand_dims(
      updated_ema_count, axis=-1)
  # pylint: enable=g-no-augmented-assignment
  with tf.control_dependencies([e_loss]):
    update_means = tf.assign(means, updated_ema_means)
    with tf.control_dependencies([update_means]):
      loss = hparams.beta * e_loss

  discrete = tf.reshape(x_means_hot, x_shape[:-1] + [bottleneck_size])
  return discrete, loss 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:38,代碼來源:transformer_nat.py

示例11: vq_discrete_bottleneck

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def vq_discrete_bottleneck(x,
                           bottleneck_bits,
                           beta=0.25,
                           decay=0.999,
                           epsilon=1e-5,
                           soft_em=False,
                           num_samples=10):
  """Simple vector quantized discrete bottleneck."""
  bottleneck_size = 2**bottleneck_bits
  x_shape = common_layers.shape_list(x)
  hidden_size = x_shape[-1]
  means, ema_means, ema_count = get_vq_bottleneck(bottleneck_size, hidden_size)
  x = tf.reshape(x, [-1, hidden_size])
  x_means_hot, e_loss = vq_nearest_neighbor(
      x, means, soft_em=soft_em, num_samples=num_samples)

  # Update the ema variables
  updated_ema_count = moving_averages.assign_moving_average(
      ema_count,
      tf.reduce_sum(
          tf.reshape(x_means_hot, shape=[-1, bottleneck_size]), axis=0),
      decay,
      zero_debias=False)

  dw = tf.matmul(x_means_hot, x, transpose_a=True)
  updated_ema_means = tf.identity(moving_averages.assign_moving_average(
      ema_means, dw, decay, zero_debias=False))
  n = tf.reduce_sum(updated_ema_count, axis=-1, keepdims=True)
  updated_ema_count = (
      (updated_ema_count + epsilon) / (n + bottleneck_size * epsilon) * n)
  updated_ema_means /= tf.expand_dims(updated_ema_count, axis=-1)
  with tf.control_dependencies([e_loss]):
    update_means = means.assign(updated_ema_means)
    with tf.control_dependencies([update_means]):
      loss = beta * e_loss

  d = tf.reshape(x_means_hot, x_shape[:-1] + [bottleneck_size])
  return d, loss 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:40,代碼來源:discretization.py

示例12: batchNormalization

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def batchNormalization(x, is_training, decay= 0.9, epsilon= 0.001, inference_only= False):
    x_shape = x.get_shape()
    params_shape = x_shape[-1:]


    axis = list(range(len(x_shape) - 1))

    beta = _get_variable('beta',
                         params_shape,
                         initializer= tf.zeros_initializer)
    gamma = _get_variable('gamma',
                          params_shape,
                          initializer= tf.ones_initializer)

    moving_mean = _get_variable('moving_mean',
                                params_shape,
                                initializer= tf.zeros_initializer,
                                trainable= False)
    moving_variance = _get_variable('moving_variance',
                                    params_shape,
                                    initializer= tf.ones_initializer,
                                    trainable= False)

    # These ops will only be preformed when training.

    
    mean, variance = tf.nn.moments(x, axis)
    update_moving_mean = moving_averages.assign_moving_average(moving_mean,
                                                               mean, decay)
    update_moving_variance = moving_averages.assign_moving_average(
        moving_variance, variance, decay)
    tf.add_to_collection(tf.GraphKeys.UPDATE_OPS , update_moving_mean)
    tf.add_to_collection(tf.GraphKeys.UPDATE_OPS , update_moving_variance)
    return tf.cond(is_training, lambda: tf.nn.batch_normalization(x, mean, variance, beta, gamma, epsilon), lambda: tf.nn.batch_normalization(x, moving_mean, moving_variance, beta, gamma, epsilon))
    #return tf.contrib.layers.batch_norm(x, decay= decay, epsilon= epsilon, is_training= is_training)
# Flatten Layer 
開發者ID:arashno,項目名稱:tensorflow_multigpu_imagenet,代碼行數:38,代碼來源:common.py

示例13: _batch_norm_without_layers

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def _batch_norm_without_layers(self, input_layer, decay, use_scale, epsilon):
    """Batch normalization on `input_layer` without tf.layers."""
    # We make this function as similar as possible to the
    # tf.contrib.layers.batch_norm, to minimize the differences between using
    # layers and not using layers.
    shape = input_layer.shape
    num_channels = shape[3] if self.data_format == 'NHWC' else shape[1]
    beta = self.get_variable('beta', [num_channels], tf.float32, tf.float32,
                             initializer=tf.zeros_initializer())
    if use_scale:
      gamma = self.get_variable('gamma', [num_channels], tf.float32,
                                tf.float32, initializer=tf.ones_initializer())
    else:
      gamma = tf.constant(1.0, tf.float32, [num_channels])
    # For moving variables, we use tf.get_variable instead of self.get_variable,
    # since self.get_variable returns the result of tf.cast which we cannot
    # assign to.
    moving_mean = tf.get_variable('moving_mean', [num_channels],
                                  tf.float32,
                                  initializer=tf.zeros_initializer(),
                                  trainable=False)
    moving_variance = tf.get_variable('moving_variance', [num_channels],
                                      tf.float32,
                                      initializer=tf.ones_initializer(),
                                      trainable=False)
    if self.phase_train:
      bn, batch_mean, batch_variance = tf.nn.fused_batch_norm(
          input_layer, gamma, beta, epsilon=epsilon,
          data_format=self.data_format, is_training=True)
      mean_update = moving_averages.assign_moving_average(
          moving_mean, batch_mean, decay=decay, zero_debias=False)
      variance_update = moving_averages.assign_moving_average(
          moving_variance, batch_variance, decay=decay, zero_debias=False)
      tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, mean_update)
      tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, variance_update)
    else:
      bn, _, _ = tf.nn.fused_batch_norm(
          input_layer, gamma, beta, mean=moving_mean,
          variance=moving_variance, epsilon=epsilon,
          data_format=self.data_format, is_training=False)
    return bn 
開發者ID:tensorpack,項目名稱:benchmarks,代碼行數:43,代碼來源:convnet_builder.py

示例14: __call__

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def __call__(self, input_layer, epsilon=1e-5, decay=0.9, name="batch_norm",
                 in_dim=None, phase=Phase.train):
        shape = input_layer.shape
        shp = in_dim or shape[-1]
        with tf.variable_scope(name) as scope:
            self.mean = self.variable('mean', [shp], init=tf.constant_initializer(0.), train=False)
            self.variance = self.variable('variance', [shp], init=tf.constant_initializer(1.0), train=False)

            self.gamma = self.variable("gamma", [shp], init=tf.random_normal_initializer(1., 0.02))
            self.beta = self.variable("beta", [shp], init=tf.constant_initializer(0.))

            if phase == Phase.train:
                mean, variance = tf.nn.moments(input_layer.tensor, [0, 1, 2])
                mean.set_shape((shp,))
                variance.set_shape((shp,))

                update_moving_mean = moving_averages.assign_moving_average(self.mean, mean, decay)
                update_moving_variance = moving_averages.assign_moving_average(self.variance, variance, decay)

                with tf.control_dependencies([update_moving_mean, update_moving_variance]):
                    normalized_x = tf.nn.batch_norm_with_global_normalization(
                        input_layer.tensor, mean, variance, self.beta, self.gamma, epsilon,
                        scale_after_normalization=True)
            else:
                normalized_x = tf.nn.batch_norm_with_global_normalization(
                    input_layer.tensor, self.mean, self.variance,
                    self.beta, self.gamma, epsilon,
                    scale_after_normalization=True)
            return input_layer.with_tensor(normalized_x, parameters=self.vars) 
開發者ID:hanzhanggit,項目名稱:StackGAN,代碼行數:31,代碼來源:custom_ops.py

示例15: _adaptive_max_norm

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import assign_moving_average [as 別名]
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
  """Find max_norm given norm and previous average."""
  with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
    log_norm = math_ops.log(norm + epsilon)

    def moving_average(name, value, decay):
      moving_average_variable = vs.get_variable(
          name,
          shape=value.get_shape(),
          dtype=value.dtype,
          initializer=init_ops.zeros_initializer(),
          trainable=False)
      return moving_averages.assign_moving_average(
          moving_average_variable, value, decay, zero_debias=False)

    # quicker adaptation at the beginning
    if global_step is not None:
      n = math_ops.cast(global_step, dtypes.float32)
      decay = math_ops.minimum(decay, n / (n + 1.))

    # update averages
    mean = moving_average("mean", log_norm, decay)
    sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)

    variance = sq_mean - math_ops.square(mean)
    std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
    max_norms = math_ops.exp(mean + std_factor * std)
    return max_norms, mean 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:30,代碼來源:optimizers.py


注:本文中的tensorflow.python.training.moving_averages.assign_moving_average方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。