當前位置: 首頁>>代碼示例>>Python>>正文


Python moving_averages.ExponentialMovingAverage方法代碼示例

本文整理匯總了Python中tensorflow.python.training.moving_averages.ExponentialMovingAverage方法的典型用法代碼示例。如果您正苦於以下問題:Python moving_averages.ExponentialMovingAverage方法的具體用法?Python moving_averages.ExponentialMovingAverage怎麽用?Python moving_averages.ExponentialMovingAverage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.training.moving_averages的用法示例。


在下文中一共展示了moving_averages.ExponentialMovingAverage方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import ExponentialMovingAverage [as 別名]
def __init__(self, opt, average_decay=0.9999, num_updates=None,
               sequential_update=True):
    """Construct a new MovingAverageOptimizer.

    Args:
      opt: A tf.Optimizer that will be used to compute and apply gradients.
      average_decay: Float.  Decay to use to maintain the moving averages
                     of trained variables.
                     See tf.train.ExponentialMovingAverage for details.
      num_updates: Optional count of number of updates applied to variables.
                   See tf.train.ExponentialMovingAverage for details.
      sequential_update: Bool. If False, will compute the moving average at the
                         same time as the model is updated, potentially doing
                         benign data races.
                         If True, will update the moving average after gradient
                         updates.
    """
    self._optimizer = opt
    self._ema = moving_averages.ExponentialMovingAverage(
        average_decay, num_updates=num_updates)
    self._variable_map = None
    self._sequential_update = sequential_update 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:moving_average_optimizer.py

示例2: __init__

# 需要導入模塊: from tensorflow.python.training import moving_averages [as 別名]
# 或者: from tensorflow.python.training.moving_averages import ExponentialMovingAverage [as 別名]
def __init__(self, optimizer, begin_step, end_step, frequency,
               drop_fraction=0.1, drop_fraction_anneal='constant',
               use_locking=False, grow_init='zeros', momentum=0.9,
               use_tpu=False, name='SparseMomentumOptimizer',
               stateless_seed_offset=0):
    super(SparseMomentumOptimizer, self).__init__(
        optimizer, begin_step, end_step, frequency, drop_fraction=drop_fraction,
        drop_fraction_anneal=drop_fraction_anneal, grow_init=grow_init,
        use_locking=use_locking, name='SparseMomentumOptimizer',
        stateless_seed_offset=stateless_seed_offset)
    self._ema_grads = moving_averages.ExponentialMovingAverage(decay=momentum)
    self._use_tpu = use_tpu 
開發者ID:google-research,項目名稱:rigl,代碼行數:14,代碼來源:sparse_optimizers.py


注:本文中的tensorflow.python.training.moving_averages.ExponentialMovingAverage方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。