當前位置: 首頁>>代碼示例>>Python>>正文


Python evaluation._StopAfterNEvalsHook方法代碼示例

本文整理匯總了Python中tensorflow.python.training.evaluation._StopAfterNEvalsHook方法的典型用法代碼示例。如果您正苦於以下問題:Python evaluation._StopAfterNEvalsHook方法的具體用法?Python evaluation._StopAfterNEvalsHook怎麽用?Python evaluation._StopAfterNEvalsHook使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.training.evaluation的用法示例。


在下文中一共展示了evaluation._StopAfterNEvalsHook方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _convert_eval_steps_to_hooks

# 需要導入模塊: from tensorflow.python.training import evaluation [as 別名]
# 或者: from tensorflow.python.training.evaluation import _StopAfterNEvalsHook [as 別名]
def _convert_eval_steps_to_hooks(self, steps):
    with self._ctx.with_mode(model_fn_lib.ModeKeys.EVAL) as ctx:
      if ctx.is_running_on_cpu():
        return super(TPUEstimator, self)._convert_eval_steps_to_hooks(steps)

    if steps is None:
      raise ValueError('Evaluate `steps` must be set on TPU. Cannot be `None`.')

    util_lib.check_positive_integer(steps, 'Eval steps')

    return [
        evaluation._StopAfterNEvalsHook(  # pylint: disable=protected-access
            num_evals=steps),
        _SetEvalIterationsHook(steps)
    ] 
開發者ID:ymcui,項目名稱:Chinese-XLNet,代碼行數:17,代碼來源:tpu_estimator.py

示例2: _convert_eval_steps_to_hooks

# 需要導入模塊: from tensorflow.python.training import evaluation [as 別名]
# 或者: from tensorflow.python.training.evaluation import _StopAfterNEvalsHook [as 別名]
def _convert_eval_steps_to_hooks(self, steps):
    if steps is None:
      return []

    if steps <= 0:
      raise ValueError('Must specify steps > 0, given: {}'.format(steps))
    return [evaluation._StopAfterNEvalsHook(num_evals=steps)]  # pylint: disable=protected-access 
開發者ID:cramerlab,項目名稱:boxnet,代碼行數:9,代碼來源:estimator_v2.py

示例3: _convert_eval_steps_to_hooks

# 需要導入模塊: from tensorflow.python.training import evaluation [as 別名]
# 或者: from tensorflow.python.training.evaluation import _StopAfterNEvalsHook [as 別名]
def _convert_eval_steps_to_hooks(self, steps):
    """Create hooks to run correct number of steps in evaluation.

    Args:
      steps: number of steps to run during evaluation.

    Raises:
      ValueError: if steps is less than or equal to zero.

    Returns:
      List of hooks to be passed to the estimator.
    """
    if steps is None:
      return []

    if steps <= 0:
      raise ValueError('Must specify steps > 0, given: {}'.format(steps))

    # The hooks are declared as private in evaluation.py discourage the use
    # by other libraries or open source users. This should be the only usage
    # of the estimator evaluation hooks.
    if self._eval_distribution:
      steps_per_run = getattr(self._eval_distribution.extended, 'steps_per_run',
                              1)
      if steps_per_run > 1:
        return [
            evaluation._MultiStepStopAfterNEvalsHook(  # pylint: disable=protected-access
                num_evals=steps,
                steps_per_run=steps_per_run)
        ]
    return [evaluation._StopAfterNEvalsHook(num_evals=steps)]  # pylint: disable=protected-access 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:33,代碼來源:estimator.py

示例4: evaluate

# 需要導入模塊: from tensorflow.python.training import evaluation [as 別名]
# 或者: from tensorflow.python.training.evaluation import _StopAfterNEvalsHook [as 別名]
def evaluate(self, input_fn, steps=None, hooks=None, checkpoint_path=None,
               name=None):
    """Evaluates the model given evaluation data input_fn.

    For each step, calls `input_fn`, which returns one batch of data.
    Evaluates until:
    - `steps` batches are processed, or
    - `input_fn` raises an end-of-input exception (`OutOfRangeError` or
    `StopIteration`).

    Args:
      input_fn: Input function returning a tuple of:
          features - Dictionary of string feature name to `Tensor` or
            `SparseTensor`.
          labels - `Tensor` or dictionary of `Tensor` with labels.
      steps: Number of steps for which to evaluate model. If `None`, evaluates
        until `input_fn` raises an end-of-input exception.
      hooks: List of `SessionRunHook` subclass instances. Used for callbacks
        inside the evaluation call.
      checkpoint_path: Path of a specific checkpoint to evaluate. If `None`, the
        latest checkpoint in `model_dir` is used.
      name: Name of the evaluation if user needs to run multiple evaluations on
        different data sets, such as on training data vs test data. Metrics for
        different evaluations are saved in separate folders, and appear
        separately in tensorboard.

    Returns:
      A dict containing the evaluation metrics specified in `model_fn` keyed by
      name, as well as an entry `global_step` which contains the value of the
      global step for which this evaluation was performed.

    Raises:
      ValueError: If `steps <= 0`.
      ValueError: If no model has been trained, namely `model_dir`, or the
        given `checkpoint_path` is empty.
    """
    hooks = _check_hooks_type(hooks)
    if steps is not None:
      if steps <= 0:
        raise ValueError('Must specify steps > 0, given: {}'.format(steps))
      hooks.append(evaluation._StopAfterNEvalsHook(  # pylint: disable=protected-access
          num_evals=steps))

    return self._evaluate_model(
        input_fn=input_fn,
        hooks=hooks,
        checkpoint_path=checkpoint_path,
        name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:50,代碼來源:estimator.py


注:本文中的tensorflow.python.training.evaluation._StopAfterNEvalsHook方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。