當前位置: 首頁>>代碼示例>>Python>>正文


Python strip_unused_lib.strip_unused方法代碼示例

本文整理匯總了Python中tensorflow.python.tools.strip_unused_lib.strip_unused方法的典型用法代碼示例。如果您正苦於以下問題:Python strip_unused_lib.strip_unused方法的具體用法?Python strip_unused_lib.strip_unused怎麽用?Python strip_unused_lib.strip_unused使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.tools.strip_unused_lib的用法示例。


在下文中一共展示了strip_unused_lib.strip_unused方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: optimize_graph

# 需要導入模塊: from tensorflow.python.tools import strip_unused_lib [as 別名]
# 或者: from tensorflow.python.tools.strip_unused_lib import strip_unused [as 別名]
def optimize_graph(graph):
    """Strips unused subgraphs and save it as another frozen TF model."""
    gdef = strip_unused_lib.strip_unused(
            input_graph_def = graph.as_graph_def(),
            input_node_names = [input_node],
            output_node_names = [bbox_output_node, class_output_node],
            placeholder_type_enum = dtypes.float32.as_datatype_enum)

    with gfile.GFile(frozen_model_file, "wb") as f:
        f.write(gdef.SerializeToString())


# Load the original graph and remove anything we don't need. 
開發者ID:hollance,項目名稱:coreml-survival-guide,代碼行數:15,代碼來源:ssdlite.py

示例2: optimize_for_inference

# 需要導入模塊: from tensorflow.python.tools import strip_unused_lib [as 別名]
# 或者: from tensorflow.python.tools.strip_unused_lib import strip_unused [as 別名]
def optimize_for_inference(input_graph_def, input_node_names, output_node_names,
                           placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: The AttrValue enum for the placeholder data type, or
        a list that specifies one value per input node name.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:30,代碼來源:optimize_for_inference_lib.py

示例3: optimize_for_inference

# 需要導入模塊: from tensorflow.python.tools import strip_unused_lib [as 別名]
# 或者: from tensorflow.python.tools.strip_unused_lib import strip_unused [as 別名]
def optimize_for_inference(input_graph_def, input_node_names,
                           output_node_names, placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: Data type of the placeholders used for inputs.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(optimized_graph_def,
                                                      input_node_names,
                                                      output_node_names,
                                                      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(optimized_graph_def)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:29,代碼來源:optimize_for_inference_lib.py

示例4: optimize_graph

# 需要導入模塊: from tensorflow.python.tools import strip_unused_lib [as 別名]
# 或者: from tensorflow.python.tools.strip_unused_lib import strip_unused [as 別名]
def optimize_graph(input_path, output_path, input_nodes, output_nodes):
    graph = tf.Graph()
    with tf.Session(graph=graph) as sess:
        tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], input_path)

    gdef = strip_unused_lib.strip_unused(
        input_graph_def=graph.as_graph_def(),
        input_node_names=input_nodes,
        output_node_names=output_nodes,
        placeholder_type_enum=dtypes.float32.as_datatype_enum)
    with gfile.GFile(output_path, 'wb') as f:
        f.write(gdef.SerializeToString())
    return graph 
開發者ID:IBM,項目名稱:MAX-Object-Detector,代碼行數:15,代碼來源:convert_ssd_helper.py

示例5: test_rewrite_nn_resize_op_multiple_path

# 需要導入模塊: from tensorflow.python.tools import strip_unused_lib [as 別名]
# 或者: from tensorflow.python.tools.strip_unused_lib import strip_unused [as 別名]
def test_rewrite_nn_resize_op_multiple_path(self):
    g = tf.Graph()
    with g.as_default():
      with tf.name_scope('nearest_upsampling'):
        x = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
        x_stack = tf.stack([tf.stack([x] * 2, axis=3)] * 2, axis=2)
        x_reshape = tf.reshape(x_stack, [8, 20, 20, 8])

      with tf.name_scope('nearest_upsampling'):
        x_2 = array_ops.placeholder(dtypes.float32, shape=(8, 10, 10, 8))
        x_stack_2 = tf.stack([tf.stack([x_2] * 2, axis=3)] * 2, axis=2)
        x_reshape_2 = tf.reshape(x_stack_2, [8, 20, 20, 8])

      t = x_reshape + x_reshape_2

      exporter.rewrite_nn_resize_op()

    graph_def = g.as_graph_def()
    graph_def = strip_unused_lib.strip_unused(
        graph_def,
        input_node_names=[
            'nearest_upsampling/Placeholder', 'nearest_upsampling_1/Placeholder'
        ],
        output_node_names=['add'],
        placeholder_type_enum=dtypes.float32.as_datatype_enum)

    counter_resize_op = 0
    t_input_ops = [op.name for op in t.op.inputs]
    for node in graph_def.node:
      # Make sure Stacks are replaced.
      self.assertNotEqual(node.op, 'Pack')
      if node.op == 'ResizeNearestNeighbor':
        counter_resize_op += 1
        self.assertIn(six.ensure_str(node.name) + ':0', t_input_ops)
    self.assertEqual(counter_resize_op, 2) 
開發者ID:tensorflow,項目名稱:models,代碼行數:37,代碼來源:exporter_tf1_test.py

示例6: optimize_for_inference

# 需要導入模塊: from tensorflow.python.tools import strip_unused_lib [as 別名]
# 或者: from tensorflow.python.tools.strip_unused_lib import strip_unused [as 別名]
def optimize_for_inference(input_graph_def, input_node_names, output_node_names,
                           placeholder_type_enum):
  """Applies a series of inference optimizations on the input graph.

  Args:
    input_graph_def: A GraphDef containing a training model.
    input_node_names: A list of names of the nodes that are fed inputs during
      inference.
    output_node_names: A list of names of the nodes that produce the final
      results.
    placeholder_type_enum: The AttrValue enum for the placeholder data type, or
        a list that specifies one value per input node name.

  Returns:
    An optimized version of the input graph.
  """
  ensure_graph_is_valid(input_graph_def)
  optimized_graph_def = input_graph_def
  optimized_graph_def = strip_unused_lib.strip_unused(
      optimized_graph_def, input_node_names, output_node_names,
      placeholder_type_enum)
  optimized_graph_def = graph_util.remove_training_nodes(
      optimized_graph_def, output_node_names)
  optimized_graph_def = fold_batch_norms(optimized_graph_def)
  optimized_graph_def = fuse_resize_and_conv(optimized_graph_def,
                                             output_node_names)
  ensure_graph_is_valid(optimized_graph_def)
  return optimized_graph_def 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:30,代碼來源:optimize_for_inference_lib.py


注:本文中的tensorflow.python.tools.strip_unused_lib.strip_unused方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。