當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize_for_inference_lib.optimize_for_inference方法代碼示例

本文整理匯總了Python中tensorflow.python.tools.optimize_for_inference_lib.optimize_for_inference方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize_for_inference_lib.optimize_for_inference方法的具體用法?Python optimize_for_inference_lib.optimize_for_inference怎麽用?Python optimize_for_inference_lib.optimize_for_inference使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.tools.optimize_for_inference_lib的用法示例。


在下文中一共展示了optimize_for_inference_lib.optimize_for_inference方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _optimize_graph

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def _optimize_graph(basename, output_dir):
    name, _ = os.path.splitext(basename)
    frozen_graph_filename = os.path.join(output_dir, '%s_frozen.pb' % name)
    graph_def = load_graph_def(frozen_graph_filename)

    optimized_graph = optimize_for_inference_lib.optimize_for_inference(
        input_graph_def=graph_def,
        input_node_names=['input_1'],
        placeholder_type_enum=dtypes.float32.as_datatype_enum,
        output_node_names=['conv6_interp/ResizeBilinear'],
        toco_compatible=True
    )

    optimized_graph_filename = os.path.basename(
        frozen_graph_filename).replace('frozen', 'optimized')
    optimized_graph_filename = optimized_graph_filename
    tf.train.write_graph(
        optimized_graph, output_dir, optimized_graph_filename, as_text=False
    )
    logger.info('Saved optimized graph to: %s' %
                os.path.join(output_dir, optimized_graph_filename)) 
開發者ID:fritzlabs,項目名稱:fritz-models,代碼行數:23,代碼來源:convert_to_tfmobile.py

示例2: _optimize_graph

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def _optimize_graph(basename, output_dir):
    name, _ = os.path.splitext(basename)
    frozen_graph_filename = os.path.join(output_dir, '%s_frozen.pb' % name)
    graph_def = load_graph_def(frozen_graph_filename)

    optimized_graph = optimize_for_inference_lib.optimize_for_inference(
        input_graph_def=graph_def,
        input_node_names=['input_1'],
        placeholder_type_enum=dtypes.float32.as_datatype_enum,
        output_node_names=['deprocess_stylized_image_1/mul'],
        toco_compatible=True
    )

    optimized_graph_filename = os.path.basename(
        frozen_graph_filename).replace('frozen', 'optimized')
    optimized_graph_filename = optimized_graph_filename
    tf.train.write_graph(
        optimized_graph, output_dir, optimized_graph_filename, as_text=False
    )
    logger.info('Saved optimized graph to: %s' %
                os.path.join(output_dir, optimized_graph_filename)) 
開發者ID:fritzlabs,項目名稱:fritz-models,代碼行數:23,代碼來源:convert_to_tfmobile.py

示例3: freeze

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def freeze(saved_model_dir, input_nodes, output_nodes, save_file):
    graph_def = tf.Graph()
    with tf.Session(graph=graph_def) as sess:
        tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], saved_model_dir)
        frozen_graph_def = tf.graph_util.convert_variables_to_constants(
            sess,
            sess.graph_def,
            output_nodes
        )
        frozen_graph_def = optimize_for_inference_lib.optimize_for_inference(
            frozen_graph_def,
            input_nodes,
            output_nodes,
            tf.float32.as_datatype_enum
        )
        with open(save_file, 'wb') as f:
            f.write(frozen_graph_def.SerializeToString()) 
開發者ID:opencv,項目名稱:open_model_zoo,代碼行數:19,代碼來源:freeze_saved_model.py

示例4: _optimize_for_inference

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def _optimize_for_inference(self):
        graph_def = self.getTFInputGraph().graph_def
        # Get data types of input placeholders
        placeholder_types = self._get_placeholder_types(graph_def)
        # Strip away graph nodes not used in computing the tensors with the specified output names
        input_names = [tfx.op_name(tnsr_name) for _, tnsr_name in self.getInputMapping()]
        output_names = [tfx.op_name(tnsr_name) for tnsr_name, _ in self.getOutputMapping()]
        return infr_opt.optimize_for_inference(graph_def,
                                               input_names,
                                               output_names,
                                               placeholder_types) 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:13,代碼來源:tf_tensor.py

示例5: main

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def main(unused_args):
  if not gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  input_graph_def = graph_pb2.GraphDef()
  with gfile.Open(FLAGS.input, "rb") as f:
    data = f.read()
    if FLAGS.frozen_graph:
      input_graph_def.ParseFromString(data)
    else:
      text_format.Merge(data.decode("utf-8"), input_graph_def)

  output_graph_def = optimize_for_inference_lib.optimize_for_inference(
      input_graph_def,
      FLAGS.input_names.split(","),
      FLAGS.output_names.split(","), FLAGS.placeholder_type_enum)

  if FLAGS.frozen_graph:
    f = gfile.FastGFile(FLAGS.output, "w")
    f.write(output_graph_def.SerializeToString())
  else:
    graph_io.write_graph(output_graph_def,
                         os.path.dirname(FLAGS.output),
                         os.path.basename(FLAGS.output))
  return 0 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:optimize_for_inference.py

示例6: main

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def main(unused_args):
  if not gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  input_graph_def = graph_pb2.GraphDef()
  with gfile.Open(FLAGS.input, "r") as f:
    data = f.read()
    if FLAGS.frozen_graph:
      input_graph_def.ParseFromString(data)
    else:
      text_format.Merge(data.decode("utf-8"), input_graph_def)

  output_graph_def = optimize_for_inference_lib.optimize_for_inference(
      input_graph_def,
      FLAGS.input_names.split(","),
      FLAGS.output_names.split(","), FLAGS.placeholder_type_enum)

  if FLAGS.frozen_graph:
    f = gfile.FastGFile(FLAGS.output, "w")
    f.write(output_graph_def.SerializeToString())
  else:
    graph_io.write_graph(output_graph_def,
                         os.path.dirname(FLAGS.output),
                         os.path.basename(FLAGS.output))
  return 0 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:28,代碼來源:optimize_for_inference.py

示例7: load_graph

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def load_graph(self):
    print('load graph from: ' + self.args.input_graph)

    self.infer_graph = tf.Graph()
    with self.infer_graph.as_default():
      graph_def = tf.compat.v1.GraphDef()
      with tf.compat.v1.gfile.FastGFile(self.args.input_graph, 'rb') as input_file:
        input_graph_content = input_file.read()
        graph_def.ParseFromString(input_graph_content)
      output_graph = optimize_for_inference(graph_def, [self.input_layer],
                              self.output_layers, dtypes.uint8.as_datatype_enum, False)
      tf.import_graph_def(output_graph, name='') 
開發者ID:IntelAI,項目名稱:models,代碼行數:14,代碼來源:infer_detections.py

示例8: model_freeze

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def model_freeze(path,MODEL_NAME='model'):

    # Freeze the graph

    input_graph_path = path + MODEL_NAME+'.pbtxt'
    checkpoint_path = path + 'model_ckpt'
    input_saver_def_path = ""
    input_binary = False
    output_node_names = 'positive_sentiment_probability'
    restore_op_name = "save/restore_all"
    filename_tensor_name = "save/Const:0"
    output_frozen_graph_name = path + 'frozen_'+MODEL_NAME+'.pb'
    output_optimized_graph_name = path + 'optimized_'+MODEL_NAME+'.pb'
    clear_devices = True


    freeze_graph.freeze_graph(input_graph_path, input_saver_def_path,
                            input_binary, checkpoint_path, output_node_names,
                            restore_op_name, filename_tensor_name,
    output_frozen_graph_name, clear_devices, "")

    input_graph_def = tf.GraphDef()

    with tf.gfile.Open(output_frozen_graph_name, "rb") as f:
        data = f.read()
        input_graph_def.ParseFromString(data)

    output_graph_def = optimize_for_inference_lib.optimize_for_inference(
            input_graph_def,
            ["inputs/X" ],#an array of the input node(s)
            ["positive_sentiment_probability"],
            tf.int32.as_datatype_enum # an array of output nodes
            )

    # Save the optimized graph

    f = tf.gfile.FastGFile(output_optimized_graph_name, "w")
    f.write(output_graph_def.SerializeToString()) 
開發者ID:PacktPublishing,項目名稱:Intelligent-Projects-Using-Python,代碼行數:40,代碼來源:freeze_code.py

示例9: main

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def main(unused_args):
  if not tf.gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  input_graph_def = tf.GraphDef()
  with tf.gfile.Open(FLAGS.input, "r") as f:
    data = f.read()
    if FLAGS.frozen_graph:
      input_graph_def.ParseFromString(data)
    else:
      text_format.Merge(data.decode("utf-8"), input_graph_def)

  output_graph_def = optimize_for_inference_lib.optimize_for_inference(
      input_graph_def,
      FLAGS.input_names.split(","),
      FLAGS.output_names.split(","), FLAGS.placeholder_type_enum)

  if FLAGS.frozen_graph:
    f = tf.gfile.FastGFile(FLAGS.output, "w")
    f.write(output_graph_def.SerializeToString())
  else:
    tf.train.write_graph(output_graph_def,
                         os.path.dirname(FLAGS.output),
                         os.path.basename(FLAGS.output))
  return 0 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:optimize_for_inference.py

示例10: export_model

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def export_model(saver, model, input_node_names, output_node_name):
    if not path.exists('out'):
        os.mkdir('out')

    tf.train.write_graph(K.get_session().graph_def, 'out', model_name + '_graph.pbtxt')

    saver.save(K.get_session(), 'out/' + model_name + '.chkp')

    freeze_graph.freeze_graph('out/' + model_name + '_graph.pbtxt', None, False,
                              'out/' + model_name + '.chkp', output_node_name,
                              "save/restore_all", "save/Const:0",
                              'out/frozen_' + model_name + '.bytes', True, "")

    input_graph_def = tf.GraphDef()
    with tf.gfile.Open('out/frozen_' + model_name + '.bytes', "rb") as f:
        input_graph_def.ParseFromString(f.read())

    output_graph_def = optimize_for_inference_lib.optimize_for_inference(
            input_graph_def, input_node_names, [output_node_name],
            tf.float32.as_datatype_enum)

    with tf.gfile.FastGFile('out/opt_' + model_name + '.bytes', "wb") as f:
        f.write(output_graph_def.SerializeToString())

    print("graph saved!")

########################################################################################################################
# Main program 
開發者ID:jzharris,項目名稱:Unity-MNIST,代碼行數:30,代碼來源:mnist_cnn1.py

示例11: export_model

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def export_model(model_output_dir, input_node_names, output_node_name):
    """Export the model so we can use it later.

    This will create two Protocol Buffer files in the model output directory.
    These files represent a serialized version of our model with all the
    learned weights and biases. One of the ProtoBuf files is a version
    optimized for inference-only usage.
    """

    name_base = os.path.join(model_output_dir, MODEL_NAME)
    frozen_graph_file = os.path.join(model_output_dir,
                                     'frozen_' + MODEL_NAME + '.pb')
    freeze_graph.freeze_graph(
        name_base + '.pbtxt', None, False, name_base + '.chkp',
        output_node_name, "save/restore_all", "save/Const:0",
        frozen_graph_file, True, ""
    )

    input_graph_def = tf.GraphDef()
    with tf.gfile.Open(frozen_graph_file, "rb") as f:
        input_graph_def.ParseFromString(f.read())

    output_graph_def = optimize_for_inference_lib.optimize_for_inference(
            input_graph_def, input_node_names, [output_node_name],
            tf.float32.as_datatype_enum)

    optimized_graph_file = os.path.join(model_output_dir,
                                        'optimized_' + MODEL_NAME + '.pb')
    with tf.gfile.GFile(optimized_graph_file, "wb") as f:
        f.write(output_graph_def.SerializeToString())

    print("Inference optimized graph saved at: " + optimized_graph_file) 
開發者ID:IBM,項目名稱:tensorflow-hangul-recognition,代碼行數:34,代碼來源:hangul_model.py

示例12: main

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def main(unused_args):
    if not gfile.Exists(FLAGS.input):
        print("Input graph file '" + FLAGS.input + "' does not exist!")
        return -1

    input_graph_def = graph_pb2.GraphDef()
    with gfile.Open(FLAGS.input, "rb") as f:
        data = f.read()
        if FLAGS.frozen_graph:
            input_graph_def.ParseFromString(data)
        else:
            text_format.Merge(data.decode("utf-8"), input_graph_def)

    output_graph_def = optimize_for_inference_lib.optimize_for_inference(
        input_graph_def,
        FLAGS.input_names.split(","),
        FLAGS.output_names.split(","),
        FLAGS.placeholder_type_enum,
        FLAGS.toco_compatible)

    if FLAGS.frozen_graph:
        f = gfile.FastGFile(FLAGS.output, "w")
        f.write(output_graph_def.SerializeToString())
    else:
        graph_io.write_graph(output_graph_def,
                             os.path.dirname(FLAGS.output),
                             os.path.basename(FLAGS.output))
    return 0 
開發者ID:jiny2001,項目名稱:dcscn-super-resolution,代碼行數:30,代碼來源:optimize_for_inference.py

示例13: optimize_graph

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def optimize_graph(frozen_graph_filename, suffix='optimized'):
    """Optimize a TensorFlow graph for inference.

    Optimized graphs are saved to the same directory as the input frozen graph.

    Args:
        frozen_graph_filename (str): the filename of a frozen graph.
        suffix (optional, str): a suffix to append to the optimized graph file.
    
    Returns:
        optimized_graph_filename (str): a path to the saved optimized graph.
    """
    output_dir, basename = os.path.split(frozen_graph_filename)
    graph_def = load_graph_def(frozen_graph_filename)

    optimized_graph = optimize_for_inference_lib.optimize_for_inference(
        input_graph_def=graph_def,
        input_node_names=['input_1'],
        placeholder_type_enum=dtypes.float32.as_datatype_enum,
        output_node_names=['deprocess_stylized_image_1/mul'],
        toco_compatible=True
    )

    optimized_graph_filename = os.path.basename(
        frozen_graph_filename).replace('frozen', suffix)
    optimized_graph_filename = optimized_graph_filename
    tf.train.write_graph(
        optimized_graph, output_dir, optimized_graph_filename, as_text=False
    )
    logger.info('Saved optimized graph to: %s' %
                os.path.join(output_dir, optimized_graph_filename))
    return optimized_graph_filename 
開發者ID:fritzlabs,項目名稱:fritz-models,代碼行數:34,代碼來源:tf_utils.py

示例14: convert_to_pb

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def convert_to_pb(model, path, input_layer_name,  output_layer_name, pbfilename, verbose=False):

  model.load(path,weights_only=True)
  print("[INFO] Loaded CNN network weights from " + path + " ...")

  print("[INFO] Re-export model ...")
  del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:]
  model.save("model-tmp.tfl")

  # taken from: https://stackoverflow.com/questions/34343259/is-there-an-example-on-how-to-generate-protobuf-files-holding-trained-tensorflow

  print("[INFO] Re-import model ...")

  input_checkpoint = "model-tmp.tfl"
  saver = tf.train.import_meta_graph(input_checkpoint + '.meta', True)
  sess = tf.Session();
  saver.restore(sess, input_checkpoint)

  # print out all layers to find name of output

  if (verbose):
      op = sess.graph.get_operations()
      [print(m.values()) for m in op][1]

  print("[INFO] Freeze model to " +  pbfilename + " ...")

  # freeze and removes nodes which are not related to feedforward prediction

  minimal_graph = convert_variables_to_constants(sess, sess.graph.as_graph_def(), [output_layer_name])

  graph_def = optimize_for_inference_lib.optimize_for_inference(minimal_graph, [input_layer_name], [output_layer_name], tf.float32.as_datatype_enum)
  graph_def = TransformGraph(graph_def, [input_layer_name], [output_layer_name], ["sort_by_execution_order"])

  with tf.gfile.GFile(pbfilename, 'wb') as f:
      f.write(graph_def.SerializeToString())

  # write model to logs dir so we can visualize it as:
  # tensorboard --logdir="logs"

  if (verbose):
      writer = tf.summary.FileWriter('logs', graph_def)
      writer.close()

  # tidy up tmp files

  for f in glob.glob("model-tmp.tfl*"):
      os.remove(f)

  os.remove('checkpoint')

################################################################################
# convert a  binary .pb protocol buffer format model to tflite format

# e.g. for FireNet
#    pbfilename = "firenet.pb"
#    input_layer_name = 'InputData/X'                  # input layer of network
#    output_layer_name= 'FullyConnected_2/Softmax'     # output layer of network 
開發者ID:tobybreckon,項目名稱:fire-detection-cnn,代碼行數:59,代碼來源:converter.py

示例15: export_compact

# 需要導入模塊: from tensorflow.python.tools import optimize_for_inference_lib [as 別名]
# 或者: from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference [as 別名]
def export_compact(self, filename, optimize=True, toco_compatible=False):
        """Create a self-contained inference-only graph and write final graph (in pb format) to disk.

        Args:
            filename (str): path to the output graph
            optimize (bool): whether to use TensorFlow's `optimize_for_inference`
                to prune and optimize the graph. This does not work on all types of graphs.
            toco_compatible (bool): See TensorFlow's
                `optimize_for_inference
                <https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/optimize_for_inference.py>`_
                for details. Only available after TF 1.8.
        """
        if toco_compatible:
            assert optimize, "toco_compatible is only effective when optimize=True!"
        self.graph = self.config._maybe_create_graph()
        with self.graph.as_default():
            input = PlaceholderInput()
            input.setup(self.config.input_signature)
            with PredictTowerContext(''):
                self.config.tower_func(*input.get_input_tensors())

            input_tensors = get_tensors_by_names(self.config.input_names)
            output_tensors = get_tensors_by_names(self.config.output_names)

            self.config.session_init._setup_graph()
            # we cannot use "self.config.session_creator.create_session()" here since it finalizes the graph
            sess = tfv1.Session(config=tfv1.ConfigProto(allow_soft_placement=True))
            self.config.session_init._run_init(sess)

            dtypes = [n.dtype for n in input_tensors]

            # freeze variables to constants
            frozen_graph_def = graph_util.convert_variables_to_constants(
                sess,
                self.graph.as_graph_def(),
                [n.name[:-2] for n in output_tensors],
                variable_names_whitelist=None,
                variable_names_blacklist=None)

            # prune unused nodes from graph
            if optimize:
                toco_args = () if get_tf_version_tuple() < (1, 8) else (toco_compatible, )
                frozen_graph_def = optimize_for_inference_lib.optimize_for_inference(
                    frozen_graph_def,
                    [n.name[:-2] for n in input_tensors],
                    [n.name[:-2] for n in output_tensors],
                    [dtype.as_datatype_enum for dtype in dtypes],
                    *toco_args)

            with gfile.FastGFile(filename, "wb") as f:
                f.write(frozen_graph_def.SerializeToString())
                logger.info("Output graph written to {}.".format(filename)) 
開發者ID:microsoft,項目名稱:petridishnn,代碼行數:54,代碼來源:export.py


注:本文中的tensorflow.python.tools.optimize_for_inference_lib.optimize_for_inference方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。