本文整理匯總了Python中tensorflow.python.tools.freeze_graph.freeze_graph_with_def_protos方法的典型用法代碼示例。如果您正苦於以下問題:Python freeze_graph.freeze_graph_with_def_protos方法的具體用法?Python freeze_graph.freeze_graph_with_def_protos怎麽用?Python freeze_graph.freeze_graph_with_def_protos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.tools.freeze_graph
的用法示例。
在下文中一共展示了freeze_graph.freeze_graph_with_def_protos方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_checkpoint_v1
# 需要導入模塊: from tensorflow.python.tools import freeze_graph [as 別名]
# 或者: from tensorflow.python.tools.freeze_graph import freeze_graph_with_def_protos [as 別名]
def load_checkpoint_v1(self):
ckpt_path = os.path.dirname(self._tf_file)
latest_ckpt = tf.train.latest_checkpoint(ckpt_path)
saver = tf.train.import_meta_graph(latest_ckpt + ".meta")
with tf.Session() as session:
session.run(
[
tf.global_variables_initializer(),
tf.local_variables_initializer()
]
)
saver.restore(session, latest_ckpt)
graph_def = session.graph.as_graph_def(add_shapes=True)
frozen_graph = freeze_graph.freeze_graph_with_def_protos(
input_graph_def=graph_def,
input_saver_def=None,
input_checkpoint=latest_ckpt,
output_node_names=self._outputs,
restore_op_name="",
filename_tensor_name="",
output_graph=None,
clear_devices=True,
initializer_nodes=""
)
return frozen_graph
示例2: main
# 需要導入模塊: from tensorflow.python.tools import freeze_graph [as 別名]
# 或者: from tensorflow.python.tools.freeze_graph import freeze_graph_with_def_protos [as 別名]
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
tf.logging.info('Prepare to export model to: %s', FLAGS.export_path)
with tf.Graph().as_default():
image, image_size, resized_image_size = _create_input_tensors()
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: FLAGS.num_classes},
crop_size=FLAGS.crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if tuple(FLAGS.inference_scales) == (1.0,):
tf.logging.info('Exported model performs single-scale inference.')
predictions = model.predict_labels(
image,
model_options=model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Exported model performs multi-scale inference.')
predictions = model.predict_labels_multi_scale(
image,
model_options=model_options,
eval_scales=FLAGS.inference_scales,
add_flipped_images=FLAGS.add_flipped_images)
# Crop the valid regions from the predictions.
semantic_predictions = tf.slice(
predictions[common.OUTPUT_TYPE],
[0, 0, 0],
[1, resized_image_size[0], resized_image_size[1]])
# Resize back the prediction to the original image size.
def _resize_label(label, label_size):
# Expand dimension of label to [1, height, width, 1] for resize operation.
label = tf.expand_dims(label, 3)
resized_label = tf.image.resize_images(
label,
label_size,
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=True)
return tf.squeeze(resized_label, 3)
semantic_predictions = _resize_label(semantic_predictions, image_size)
semantic_predictions = tf.identity(semantic_predictions, name=_OUTPUT_NAME)
saver = tf.train.Saver(tf.model_variables())
tf.gfile.MakeDirs(os.path.dirname(FLAGS.export_path))
freeze_graph.freeze_graph_with_def_protos(
tf.get_default_graph().as_graph_def(add_shapes=True),
saver.as_saver_def(),
FLAGS.checkpoint_path,
_OUTPUT_NAME,
restore_op_name=None,
filename_tensor_name=None,
output_graph=FLAGS.export_path,
clear_devices=True,
initializer_nodes=None)
示例3: dump_parameters
# 需要導入模塊: from tensorflow.python.tools import freeze_graph [as 別名]
# 或者: from tensorflow.python.tools.freeze_graph import freeze_graph_with_def_protos [as 別名]
def dump_parameters(self):
r'''
Export the trained variables into a Protocol Buffers (.pb) file and dump into the DB
Use a structure optimal for inference
'''
Config = self.c
tf.reset_default_graph()
input, outputs, _ = self.create_inference_graph(batch_size=-1, n_steps=-1)
output_names_tensor = [tensor.op.name for tensor in outputs.values() if isinstance(tensor, Tensor)]
output_names_ops = [op.name for op in outputs.values() if isinstance(op, Operation)]
output_names = ','.join(output_names_tensor + output_names_ops)
mapping = {v.op.name: v for v in tf.global_variables() if not v.op.name.startswith('previous_state_')}
saver = tf.train.Saver(mapping)
# Restore variables from training checkpoint
checkpoint = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
checkpoint_path = checkpoint.model_checkpoint_path
output_filename = 'output_graph.pb'
export_temp_dir = tempfile.TemporaryDirectory()
export_dir = export_temp_dir.name
try:
output_graph_path = os.path.join(export_dir, output_filename)
def do_graph_freeze(output_file=None, output_node_names=None, variables_blacklist=None):
return freeze_graph.freeze_graph_with_def_protos(
input_graph_def=tf.get_default_graph().as_graph_def(),
input_saver_def=saver.as_saver_def(),
input_checkpoint=checkpoint_path,
output_node_names=output_node_names,
restore_op_name=None,
filename_tensor_name=None,
output_graph=output_file,
clear_devices=False,
variable_names_blacklist=variables_blacklist,
initializer_nodes='')
frozen_graph = do_graph_freeze(output_node_names=output_names, variables_blacklist='previous_state_c,previous_state_h')
frozen_graph.version = 1
with tf.gfile.GFile(output_graph_path, 'wb') as fout:
fout.write(frozen_graph.SerializeToString())
params = {}
# Read from temp pb file & encode it to base64 string
with open(output_graph_path, 'rb') as f:
pb_model_bytes = f.read()
params['pb_model_base64'] = base64.b64encode(pb_model_bytes).decode('utf-8')
return params
except RuntimeError as e:
logger.log('Error occured! {}'.format(e))
示例4: main
# 需要導入模塊: from tensorflow.python.tools import freeze_graph [as 別名]
# 或者: from tensorflow.python.tools.freeze_graph import freeze_graph_with_def_protos [as 別名]
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
tf.logging.info('Prepare to export model to: %s', FLAGS.export_path)
with tf.Graph().as_default():
image, image_size, resized_image_size = _create_input_tensors()
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: FLAGS.num_classes},
crop_size=FLAGS.crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if tuple(FLAGS.inference_scales) == (1.0,):
tf.logging.info('Exported model performs single-scale inference.')
predictions = model.predict_labels(
image,
model_options=model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Exported model performs multi-scale inference.')
predictions = model.predict_labels_multi_scale(
image,
model_options=model_options,
eval_scales=FLAGS.inference_scales,
add_flipped_images=FLAGS.add_flipped_images)
predictions = tf.cast(predictions[common.OUTPUT_TYPE], tf.float32)
# Crop the valid regions from the predictions.
semantic_predictions = tf.slice(
predictions,
[0, 0, 0],
[1, resized_image_size[0], resized_image_size[1]])
# Resize back the prediction to the original image size.
def _resize_label(label, label_size):
# Expand dimension of label to [1, height, width, 1] for resize operation.
label = tf.expand_dims(label, 3)
resized_label = tf.image.resize_images(
label,
label_size,
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=True)
return tf.cast(tf.squeeze(resized_label, 3), tf.int32)
semantic_predictions = _resize_label(semantic_predictions, image_size)
semantic_predictions = tf.identity(semantic_predictions, name=_OUTPUT_NAME)
saver = tf.train.Saver(tf.model_variables())
tf.gfile.MakeDirs(os.path.dirname(FLAGS.export_path))
freeze_graph.freeze_graph_with_def_protos(
tf.get_default_graph().as_graph_def(add_shapes=True),
saver.as_saver_def(),
FLAGS.checkpoint_path,
_OUTPUT_NAME,
restore_op_name=None,
filename_tensor_name=None,
output_graph=FLAGS.export_path,
clear_devices=True,
initializer_nodes=None)