本文整理匯總了Python中tensorflow.python.pywrap_tensorflow.EventsWriter方法的典型用法代碼示例。如果您正苦於以下問題:Python pywrap_tensorflow.EventsWriter方法的具體用法?Python pywrap_tensorflow.EventsWriter怎麽用?Python pywrap_tensorflow.EventsWriter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.pywrap_tensorflow
的用法示例。
在下文中一共展示了pywrap_tensorflow.EventsWriter方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, dir):
try:
os.makedirs(dir)
except OSError as e:
if e.errno != errno.EEXIST:
raise
self.dir = dir
self.step = 1
prefix = 'events'
path = osp.join(osp.abspath(dir), prefix)
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.core.util import event_pb2
from tensorflow.python.util import compat
self.tf = tf
self.event_pb2 = event_pb2
self.pywrap_tensorflow = pywrap_tensorflow
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
示例2: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, log_dir=None, writer=None):
self.key_steps = {}
self.rate_values = {}
self.writer = None # type: Union[None, pywrap_tensorflow.EventsWriter, tf.summary.FileWriter]
if log_dir is None and writer is None:
log_dir = 'logs'
self.set_log_dir(log_dir)
elif log_dir is not None and writer is None:
self.set_log_dir(log_dir)
elif log_dir is None and writer is not None:
self.set_writer(writer)
else:
raise ValueError("Only one of log_dir or writer must be specified")
示例3: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, dir):
os.makedirs(dir, exist_ok=True)
self.dir = dir
self.step = 1
prefix = 'events'
path = osp.join(osp.abspath(dir), prefix)
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.core.util import event_pb2
from tensorflow.python.util import compat
self.tf = tf
self.event_pb2 = event_pb2
self.pywrap_tensorflow = pywrap_tensorflow
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
示例4: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, dir, prefix):
self.dir = dir
self.step = 1 # Start at 1, because EvWriter automatically generates an object with step=0
self.evwriter = pywrap_tensorflow.EventsWriter(compat.as_bytes(os.path.join(dir, prefix)))
示例5: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, logdir, max_queue=10, flush_secs=120,
filename_suffix=None):
"""Creates a `EventFileWriter` and an event file to write to.
On construction the summary writer creates a new event file in `logdir`.
This event file will contain `Event` protocol buffers, which are written to
disk via the add_event method.
The other arguments to the constructor control the asynchronous writes to
the event file:
* `flush_secs`: How often, in seconds, to flush the added summaries
and events to disk.
* `max_queue`: Maximum number of summaries or events pending to be
written to disk before one of the 'add' calls block.
Args:
logdir: A string. Directory where event file will be written.
max_queue: Integer. Size of the queue for pending events and summaries.
flush_secs: Number. How often, in seconds, to flush the
pending events and summaries to disk.
filename_suffix: A string. Every event file's name is suffixed with
`filename_suffix`.
"""
self._logdir = logdir
if not gfile.IsDirectory(self._logdir):
gfile.MakeDirs(self._logdir)
self._event_queue = six.moves.queue.Queue(max_queue)
self._ev_writer = pywrap_tensorflow.EventsWriter(
compat.as_bytes(os.path.join(self._logdir, "events")))
self._flush_secs = flush_secs
self._sentinel_event = self._get_sentinel_event()
if filename_suffix:
self._ev_writer.InitWithSuffix(compat.as_bytes(filename_suffix))
self._closed = False
self._worker = _EventLoggerThread(self._event_queue, self._ev_writer,
self._flush_secs, self._sentinel_event)
self._worker.start()
示例6: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, logdir, max_queue=10, flush_secs=120):
"""Creates a `EventFileWriter` and an event file to write to.
On construction the summary writer creates a new event file in `logdir`.
This event file will contain `Event` protocol buffers, which are written to
disk via the add_event method.
The other arguments to the constructor control the asynchronous writes to
the event file:
* `flush_secs`: How often, in seconds, to flush the added summaries
and events to disk.
* `max_queue`: Maximum number of summaries or events pending to be
written to disk before one of the 'add' calls block.
Args:
logdir: A string. Directory where event file will be written.
max_queue: Integer. Size of the queue for pending events and summaries.
flush_secs: Number. How often, in seconds, to flush the
pending events and summaries to disk.
"""
self._logdir = logdir
if not gfile.IsDirectory(self._logdir):
gfile.MakeDirs(self._logdir)
self._event_queue = six.moves.queue.Queue(max_queue)
self._ev_writer = pywrap_tensorflow.EventsWriter(
compat.as_bytes(os.path.join(self._logdir, "events")))
self._closed = False
self._worker = _EventLoggerThread(self._event_queue, self._ev_writer,
flush_secs)
self._worker.start()
示例7: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, folder):
"""
Dumps key/value pairs into TensorBoard's numeric format.
:param folder: (str) the folder to write the log to
"""
os.makedirs(folder, exist_ok=True)
self.dir = folder
self.step = 1
prefix = 'events'
path = os.path.join(os.path.abspath(folder), prefix)
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) # type: pywrap_tensorflow.EventsWriter
示例8: __init__
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def __init__(self, dir):
os.makedirs(dir, exist_ok=True)
self.dir = dir
self.step = 1
prefix = 'events'
path = osp.join(osp.abspath(dir), prefix)
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
from tensorflow.core.util import event_pb2
from tensorflow.python.util import compat
self.tf = tf
self.event_pb2 = event_pb2
self.pywrap_tensorflow = pywrap_tensorflow
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))
示例9: testWriteEvents
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def testWriteEvents(self):
file_prefix = os.path.join(self.get_temp_dir(), "events")
writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(file_prefix))
filename = compat.as_text(writer.FileName())
event_written = event_pb2.Event(
wall_time=123.45, step=67,
summary=summary_pb2.Summary(
value=[summary_pb2.Summary.Value(tag="foo", simple_value=89.0)]))
writer.WriteEvent(event_written)
writer.Flush()
writer.Close()
with self.assertRaises(errors.NotFoundError):
for r in tf_record.tf_record_iterator(filename + "DOES_NOT_EXIST"):
self.assertTrue(False)
reader = tf_record.tf_record_iterator(filename)
event_read = event_pb2.Event()
event_read.ParseFromString(next(reader))
self.assertTrue(event_read.HasField("file_version"))
event_read.ParseFromString(next(reader))
# Second event
self.assertProtoEquals("""
wall_time: 123.45 step: 67
summary { value { tag: 'foo' simple_value: 89.0 } }
""", event_read)
with self.assertRaises(StopIteration):
next(reader)
示例10: testWriteEventInvalidType
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def testWriteEventInvalidType(self):
class _Invalid(object):
def __str__(self): return "Invalid"
with self.assertRaisesRegexp(TypeError, "Invalid"):
pywrap_tensorflow.EventsWriter(b"foo").WriteEvent(_Invalid())
示例11: set_log_dir
# 需要導入模塊: from tensorflow.python import pywrap_tensorflow [as 別名]
# 或者: from tensorflow.python.pywrap_tensorflow import EventsWriter [as 別名]
def set_log_dir(self, log_dir):
os.makedirs(log_dir, exist_ok=True)
path = osp.join(log_dir, "events")
# Why don't we just use an EventsFileWriter?
# By default, we want to be fork-safe - we want to work even if we
# create the writer in one process and try to use it in a forked
# process. And because EventsFileWriter uses a subthread to do the
# actual writing, EventsFileWriter /isn't/ fork-safe.
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path))