本文整理匯總了Python中tensorflow.python.platform.gfile.MkDir方法的典型用法代碼示例。如果您正苦於以下問題:Python gfile.MkDir方法的具體用法?Python gfile.MkDir怎麽用?Python gfile.MkDir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.platform.gfile
的用法示例。
在下文中一共展示了gfile.MkDir方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _prepare_run_debug_urls
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MkDir [as 別名]
def _prepare_run_debug_urls(self, fetches, feed_dict):
"""Implementation of abstrat method in superclass.
See doc of `NonInteractiveDebugWrapperSession.__prepare_run_debug_urls()`
for details. This implentation creates a run-specific subdirectory under
self._session_root and stores information regarding run `fetches` and
`feed_dict.keys()` in the subdirectory.
Args:
fetches: Same as the `fetches` argument to `Session.run()`
feed_dict: Same as the `feed_dict` argument to `Session.run()`
Returns:
debug_urls: (`str` or `list` of `str`) file:// debug URLs to be used in
this `Session.run()` call.
"""
# Add a UUID to accommodate the possibility of concurrent run() calls.
run_dir = os.path.join(self._session_root, "run_%d_%s" %
(int(time.time() * 1e6), uuid.uuid4().hex))
gfile.MkDir(run_dir)
fetches_event = event_pb2.Event()
fetches_event.log_message.message = repr(fetches)
fetches_path = os.path.join(
run_dir,
debug_data.METADATA_FILE_PREFIX + debug_data.FETCHES_INFO_FILE_TAG)
with gfile.Open(os.path.join(fetches_path), "wb") as f:
f.write(fetches_event.SerializeToString())
feed_keys_event = event_pb2.Event()
feed_keys_event.log_message.message = (repr(feed_dict.keys()) if feed_dict
else repr(feed_dict))
feed_keys_path = os.path.join(
run_dir,
debug_data.METADATA_FILE_PREFIX + debug_data.FEED_KEYS_INFO_FILE_TAG)
with gfile.Open(os.path.join(feed_keys_path), "wb") as f:
f.write(feed_keys_event.SerializeToString())
return ["file://" + run_dir]
示例2: testGraphFromMetaGraphBecomesAvailable
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MkDir [as 別名]
def testGraphFromMetaGraphBecomesAvailable(self):
"""Test accumulator by writing values and then reading them."""
directory = os.path.join(self.get_temp_dir(), 'metagraph_test_values_dir')
if gfile.IsDirectory(directory):
gfile.DeleteRecursively(directory)
gfile.MkDir(directory)
writer = tf.train.SummaryWriter(directory, max_queue=100)
with tf.Graph().as_default() as graph:
_ = tf.constant([2.0, 1.0])
# Add a graph to the summary writer.
meta_graph_def = saver.export_meta_graph(
graph_def=graph.as_graph_def(add_shapes=True))
writer.add_meta_graph(meta_graph_def)
writer.flush()
# Verify that we can load those events properly
acc = ea.EventAccumulator(directory)
acc.Reload()
self.assertTagsEqual(
acc.Tags(),
{
ea.IMAGES: [],
ea.AUDIO: [],
ea.SCALARS: [],
ea.HISTOGRAMS: [],
ea.COMPRESSED_HISTOGRAMS: [],
ea.GRAPH: True,
ea.META_GRAPH: True,
ea.RUN_METADATA: []
})
self.assertProtoEquals(graph.as_graph_def(add_shapes=True), acc.Graph())
self.assertProtoEquals(meta_graph_def, acc.MetaGraph())
示例3: _CreateCleanDirectory
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MkDir [as 別名]
def _CreateCleanDirectory(path):
if gfile.IsDirectory(path):
gfile.DeleteRecursively(path)
gfile.MkDir(path)
示例4: testAddRunsFromDirectory
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MkDir [as 別名]
def testAddRunsFromDirectory(self):
x = event_multiplexer.EventMultiplexer()
tmpdir = self.get_temp_dir()
join = os.path.join
fakedir = join(tmpdir, 'fake_accumulator_directory')
realdir = join(tmpdir, 'real_accumulator_directory')
self.assertEqual(x.Runs(), {})
x.AddRunsFromDirectory(fakedir)
self.assertEqual(x.Runs(), {}, 'loading fakedir had no effect')
_CreateCleanDirectory(realdir)
x.AddRunsFromDirectory(realdir)
self.assertEqual(x.Runs(), {}, 'loading empty directory had no effect')
path1 = join(realdir, 'path1')
gfile.MkDir(path1)
x.AddRunsFromDirectory(realdir)
self.assertEqual(x.Runs(), {}, 'creating empty subdirectory had no effect')
_AddEvents(path1)
x.AddRunsFromDirectory(realdir)
self.assertItemsEqual(x.Runs(), ['path1'], 'loaded run: path1')
loader1 = x._GetAccumulator('path1')
self.assertEqual(loader1._path, path1, 'has the correct path')
path2 = join(realdir, 'path2')
_AddEvents(path2)
x.AddRunsFromDirectory(realdir)
self.assertItemsEqual(x.Runs(), ['path1', 'path2'])
self.assertEqual(
x._GetAccumulator('path1'), loader1, 'loader1 not regenerated')
path2_2 = join(path2, 'path2')
_AddEvents(path2_2)
x.AddRunsFromDirectory(realdir)
self.assertItemsEqual(x.Runs(), ['path1', 'path2', 'path2/path2'])
self.assertEqual(
x._GetAccumulator('path2/path2')._path, path2_2, 'loader2 path correct')
示例5: prepare_run_debug_urls
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MkDir [as 別名]
def prepare_run_debug_urls(self, fetches, feed_dict):
"""Implementation of abstrat method in superclass.
See doc of `NonInteractiveDebugWrapperSession.prepare_run_debug_urls()`
for details. This implentation creates a run-specific subdirectory under
self._session_root and stores information regarding run `fetches` and
`feed_dict.keys()` in the subdirectory.
Args:
fetches: Same as the `fetches` argument to `Session.run()`
feed_dict: Same as the `feed_dict` argument to `Session.run()`
Returns:
debug_urls: (`str` or `list` of `str`) file:// debug URLs to be used in
this `Session.run()` call.
"""
# Add a UUID to accommodate the possibility of concurrent run() calls.
self._run_counter_lock.acquire()
run_dir = os.path.join(self._session_root, "run_%d_%d" %
(int(time.time() * 1e6), self._run_counter))
self._run_counter += 1
self._run_counter_lock.release()
gfile.MkDir(run_dir)
fetches_event = event_pb2.Event()
fetches_event.log_message.message = repr(fetches)
fetches_path = os.path.join(
run_dir,
debug_data.METADATA_FILE_PREFIX + debug_data.FETCHES_INFO_FILE_TAG)
with gfile.Open(os.path.join(fetches_path), "wb") as f:
f.write(fetches_event.SerializeToString())
feed_keys_event = event_pb2.Event()
feed_keys_event.log_message.message = (repr(feed_dict.keys()) if feed_dict
else repr(feed_dict))
feed_keys_path = os.path.join(
run_dir,
debug_data.METADATA_FILE_PREFIX + debug_data.FEED_KEYS_INFO_FILE_TAG)
with gfile.Open(os.path.join(feed_keys_path), "wb") as f:
f.write(feed_keys_event.SerializeToString())
return ["file://" + run_dir]
示例6: prepare_run_debug_urls
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MkDir [as 別名]
def prepare_run_debug_urls(self, fetches, feed_dict):
"""Implementation of abstrat method in superclass.
See doc of `NonInteractiveDebugWrapperSession.prepare_run_debug_urls()`
for details. This implementation creates a run-specific subdirectory under
self._session_root and stores information regarding run `fetches` and
`feed_dict.keys()` in the subdirectory.
Args:
fetches: Same as the `fetches` argument to `Session.run()`
feed_dict: Same as the `feed_dict` argument to `Session.run()`
Returns:
debug_urls: (`str` or `list` of `str`) file:// debug URLs to be used in
this `Session.run()` call.
"""
# Add a UUID to accommodate the possibility of concurrent run() calls.
self._run_counter_lock.acquire()
run_dir = os.path.join(self._session_root, "run_%d_%d" %
(int(time.time() * 1e6), self._run_counter))
self._run_counter += 1
self._run_counter_lock.release()
gfile.MkDir(run_dir)
fetches_event = event_pb2.Event()
fetches_event.log_message.message = repr(fetches)
fetches_path = os.path.join(
run_dir,
debug_data.METADATA_FILE_PREFIX + debug_data.FETCHES_INFO_FILE_TAG)
with gfile.Open(os.path.join(fetches_path), "wb") as f:
f.write(fetches_event.SerializeToString())
feed_keys_event = event_pb2.Event()
feed_keys_event.log_message.message = (repr(feed_dict.keys()) if feed_dict
else repr(feed_dict))
feed_keys_path = os.path.join(
run_dir,
debug_data.METADATA_FILE_PREFIX + debug_data.FEED_KEYS_INFO_FILE_TAG)
with gfile.Open(os.path.join(feed_keys_path), "wb") as f:
f.write(feed_keys_event.SerializeToString())
return ["file://" + run_dir]
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:46,代碼來源:dumping_wrapper.py