當前位置: 首頁>>代碼示例>>Python>>正文


Python gfile.MakeDirs方法代碼示例

本文整理匯總了Python中tensorflow.python.platform.gfile.MakeDirs方法的典型用法代碼示例。如果您正苦於以下問題:Python gfile.MakeDirs方法的具體用法?Python gfile.MakeDirs怎麽用?Python gfile.MakeDirs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.platform.gfile的用法示例。


在下文中一共展示了gfile.MakeDirs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: maybe_download

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def maybe_download(filename, work_directory, source_url):
  """Download the data from source url, unless it's already here.

  Args:
      filename: string, name of the file in the directory.
      work_directory: string, path to working directory.
      source_url: url to download from if file doesn't exist.

  Returns:
      Path to resulting file.
  """
  if not gfile.Exists(work_directory):
    gfile.MakeDirs(work_directory)
  filepath = os.path.join(work_directory, filename)
  if not gfile.Exists(filepath):
    temp_file_name, _ = urlretrieve_with_retry(source_url)
    gfile.Copy(temp_file_name, filepath)
    with gfile.GFile(filepath) as f:
      size = f.size()
    print('Successfully downloaded', filename, size, 'bytes.')
  return filepath 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:base.py

示例2: testReturnsSingleCheckpointIfOneCheckpointFound

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def testReturnsSingleCheckpointIfOneCheckpointFound(self):
    checkpoint_dir = tempfile.mkdtemp('one_checkpoint_found')
    if not gfile.Exists(checkpoint_dir):
      gfile.MakeDirs(checkpoint_dir)

    global_step = variables.get_or_create_global_step()
    saver = saver_lib.Saver()  # Saves the global step.

    with self.cached_session() as session:
      session.run(variables_lib.global_variables_initializer())
      save_path = os.path.join(checkpoint_dir, 'model.ckpt')
      saver.save(session, save_path, global_step=global_step)

    num_found = 0
    for _ in evaluation.checkpoints_iterator(checkpoint_dir, timeout=0):
      num_found += 1
    self.assertEqual(num_found, 1) 
開發者ID:google-research,項目名稱:tf-slim,代碼行數:19,代碼來源:evaluation_test.py

示例3: testFinalOpsOnEvaluationLoop

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def testFinalOpsOnEvaluationLoop(self):
    value_op, update_op = slim.metrics.streaming_accuracy(
        self._predictions, self._labels)
    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())
    # Create Checkpoint and log directories
    chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/')
    gfile.MakeDirs(chkpt_dir)
    logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/')
    gfile.MakeDirs(logdir)

    # Save initialized variables to checkpoint directory
    saver = tf.train.Saver()
    with self.test_session() as sess:
      init_op.run()
      saver.save(sess, os.path.join(chkpt_dir, 'chkpt'))

    # Now, run the evaluation loop:
    accuracy_value = slim.evaluation.evaluation_loop(
        '', chkpt_dir, logdir, eval_op=update_op, final_op=value_op,
        max_number_of_evaluations=1)
    self.assertAlmostEqual(accuracy_value, self._expected_accuracy) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:evaluation_test.py

示例4: testPathsWithParse

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def testPathsWithParse(self):
    base_dir = os.path.join(tf.test.get_temp_dir(), "paths_parse")
    self.assertFalse(gfile.Exists(base_dir))
    for p in xrange(3):
      gfile.MakeDirs(os.path.join(base_dir, "%d" % p))
    # add a base_directory to ignore
    gfile.MakeDirs(os.path.join(base_dir, "ignore"))

    # create a simple parser that pulls the export_version from the directory.
    def parser(path):
      match = re.match("^" + base_dir + "/(\\d+)$", path.path)
      if not match:
        return None
      return path._replace(export_version=int(match.group(1)))

    self.assertEquals(
        gc.get_paths(base_dir, parser=parser),
        [gc.Path(os.path.join(base_dir, "0"), 0),
         gc.Path(os.path.join(base_dir, "1"), 1),
         gc.Path(os.path.join(base_dir, "2"), 2)]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:gc_test.py

示例5: maybe_download_and_extract

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def maybe_download_and_extract(filename, data_dir, source_url):
  """Maybe download and extract a file."""
  if not gfile.Exists(data_dir):
    gfile.MakeDirs(data_dir)

  filepath = os.path.join(data_dir, filename)

  if not gfile.Exists(filepath):
    print('Downloading from {}'.format(source_url))
    temp_file_name, _ = urllib.request.urlretrieve(source_url)
    gfile.Copy(temp_file_name, filepath)
    with gfile.GFile(filepath) as f:
      size = f.size()
    print('Successfully downloaded \'{}\' of {} bytes'.format(filename, size))

  if filename.endswith('.zip'):
    print('Extracting {}'.format(filename))
    zipfile.ZipFile(file=filepath, mode='r').extractall(data_dir) 
開發者ID:GoogleCloudPlatform,項目名稱:solutions-vision-search,代碼行數:20,代碼來源:task.py

示例6: maybe_download

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def maybe_download(filepath, source_url):
  """Download the data from source url, unless it's already here.
  Args:
      basename: string, name of the file in the directory.
      target_dir: string, path to working directory.
      source_url: url to download from if file doesn't exist.
  Returns:
      Path to resulting file.
  """
  target_dir = path.dirname(filepath)
  if not gfile.Exists(target_dir):
    gfile.MakeDirs(target_dir)
  if not gfile.Exists(filepath):
    print('Downloading', source_url, 'to', filepath)
    temp_file_name, _ = _urlretrieve_with_retry(source_url)
    gfile.Copy(temp_file_name, filepath)
    with gfile.GFile(filepath) as f:
      size = f.size()
    print('Successfully downloaded', filepath, size, 'bytes.')
  return filepath 
開發者ID:tensorlang,項目名稱:tensorlang,代碼行數:22,代碼來源:graph_assets.py

示例7: get_summary_writer

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def get_summary_writer(tensorboard_dir):
  """Creates a directory for writing summaries and returns a writer."""
  tf.logging.info('TensorBoard directory: %s', tensorboard_dir)
  tf.logging.info('Deleting prior data if exists...')
  try:
    gfile.DeleteRecursively(tensorboard_dir)
  except errors.OpError as err:
    tf.logging.error('Directory did not exist? Error: %s', err)
  tf.logging.info('Deleted! Creating the directory again...')
  gfile.MakeDirs(tensorboard_dir)
  tf.logging.info('Created! Instatiating SummaryWriter...')
  summary_writer = tf.summary.FileWriter(tensorboard_dir)
  return summary_writer 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:15,代碼來源:trainer_lib.py

示例8: __init__

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def __init__(self, logdir, max_queue=10, flush_secs=120,
               filename_suffix=None):
    """Creates a `EventFileWriter` and an event file to write to.

    On construction the summary writer creates a new event file in `logdir`.
    This event file will contain `Event` protocol buffers, which are written to
    disk via the add_event method.

    The other arguments to the constructor control the asynchronous writes to
    the event file:

    *  `flush_secs`: How often, in seconds, to flush the added summaries
       and events to disk.
    *  `max_queue`: Maximum number of summaries or events pending to be
       written to disk before one of the 'add' calls block.

    Args:
      logdir: A string. Directory where event file will be written.
      max_queue: Integer. Size of the queue for pending events and summaries.
      flush_secs: Number. How often, in seconds, to flush the
        pending events and summaries to disk.
      filename_suffix: A string. Every event file's name is suffixed with
        `filename_suffix`.
    """
    self._logdir = logdir
    if not gfile.IsDirectory(self._logdir):
      gfile.MakeDirs(self._logdir)
    self._event_queue = six.moves.queue.Queue(max_queue)
    self._ev_writer = pywrap_tensorflow.EventsWriter(
        compat.as_bytes(os.path.join(self._logdir, "events")))
    self._flush_secs = flush_secs
    self._sentinel_event = self._get_sentinel_event()
    if filename_suffix:
      self._ev_writer.InitWithSuffix(compat.as_bytes(filename_suffix))
    self._closed = False
    self._worker = _EventLoggerThread(self._event_queue, self._ev_writer,
                                      self._flush_secs, self._sentinel_event)

    self._worker.start() 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:event_file_writer.py

示例9: _write_plugin_assets

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def _write_plugin_assets(self, graph):
    plugin_assets = plugin_asset.get_all_plugin_assets(graph)
    logdir = self.event_writer.get_logdir()
    for asset_container in plugin_assets:
      plugin_name = asset_container.plugin_name
      plugin_dir = os.path.join(logdir, _PLUGINS_DIR, plugin_name)
      gfile.MakeDirs(plugin_dir)
      assets = asset_container.assets()
      for (asset_name, content) in assets.items():
        asset_path = os.path.join(plugin_dir, asset_name)
        with gfile.Open(asset_path, "w") as f:
          f.write(content) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:14,代碼來源:writer.py

示例10: gfile_copy_callback

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def gfile_copy_callback(files_to_copy, export_dir_path):
  """Callback to copy files using `gfile.Copy` to an export directory.

  This method is used as the default `assets_callback` in `Exporter.init` to
  copy assets from the `assets_collection`. It can also be invoked directly to
  copy additional supplementary files into the export directory (in which case
  it is not a callback).

  Args:
    files_to_copy: A dictionary that maps original file paths to desired
      basename in the export directory.
    export_dir_path: Directory to copy the files to.
  """
  logging.info("Write assets into: %s using gfile_copy.", export_dir_path)
  gfile.MakeDirs(export_dir_path)
  for source_filepath, basename in files_to_copy.items():
    new_path = os.path.join(
        compat.as_bytes(export_dir_path), compat.as_bytes(basename))
    logging.info("Copying asset %s to path %s.", source_filepath, new_path)

    if gfile.Exists(new_path):
      # Guard against being restarted while copying assets, and the file
      # existing and being in an unknown state.
      # TODO(b/28676216): Do some file checks before deleting.
      logging.info("Removing file %s.", new_path)
      gfile.Remove(new_path)
    gfile.Copy(source_filepath, new_path) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:exporter.py

示例11: __init__

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def __init__(self, logdir, max_queue=10, flush_secs=120):
    """Creates a `EventFileWriter` and an event file to write to.

    On construction the summary writer creates a new event file in `logdir`.
    This event file will contain `Event` protocol buffers, which are written to
    disk via the add_event method.

    The other arguments to the constructor control the asynchronous writes to
    the event file:

    *  `flush_secs`: How often, in seconds, to flush the added summaries
       and events to disk.
    *  `max_queue`: Maximum number of summaries or events pending to be
       written to disk before one of the 'add' calls block.

    Args:
      logdir: A string. Directory where event file will be written.
      max_queue: Integer. Size of the queue for pending events and summaries.
      flush_secs: Number. How often, in seconds, to flush the
        pending events and summaries to disk.
    """
    self._logdir = logdir
    if not gfile.IsDirectory(self._logdir):
      gfile.MakeDirs(self._logdir)
    self._event_queue = six.moves.queue.Queue(max_queue)
    self._ev_writer = pywrap_tensorflow.EventsWriter(
        compat.as_bytes(os.path.join(self._logdir, "events")))
    self._closed = False
    self._worker = _EventLoggerThread(self._event_queue, self._ev_writer,
                                      flush_secs)

    self._worker.start() 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:34,代碼來源:event_file_writer.py

示例12: _create_tfrecord_dataset

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def _create_tfrecord_dataset(tmpdir):
  if not gfile.Exists(tmpdir):
    gfile.MakeDirs(tmpdir)

  data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)

  keys_to_features = {
      'image/encoded':
          parsing_ops.FixedLenFeature(
              shape=(), dtype=dtypes.string, default_value=''),
      'image/format':
          parsing_ops.FixedLenFeature(
              shape=(), dtype=dtypes.string, default_value='jpeg'),
      'image/class/label':
          parsing_ops.FixedLenFeature(
              shape=[1],
              dtype=dtypes.int64,
              default_value=array_ops.zeros(
                  [1], dtype=dtypes.int64))
  }

  items_to_handlers = {
      'image': tfexample_decoder.Image(),
      'label': tfexample_decoder.Tensor('image/class/label'),
  }

  decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                               items_to_handlers)

  return dataset.Dataset(
      data_sources=data_sources,
      reader=io_ops.TFRecordReader,
      decoder=decoder,
      num_samples=100,
      items_to_descriptions=None) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:dataset_data_provider_test.py

示例13: testFinalOpsOnEvaluationLoop

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def testFinalOpsOnEvaluationLoop(self):
    value_op, update_op = metric_ops.streaming_accuracy(self._predictions,
                                                        self._labels)
    init_op = control_flow_ops.group(variables.global_variables_initializer(),
                                     variables.local_variables_initializer())
    # Create Checkpoint and log directories
    chkpt_dir = os.path.join(self.get_temp_dir(), 'tmp_logs/')
    gfile.MakeDirs(chkpt_dir)
    logdir = os.path.join(self.get_temp_dir(), 'tmp_logs2/')
    gfile.MakeDirs(logdir)

    # Save initialized variables to checkpoint directory
    saver = saver_lib.Saver()
    with self.test_session() as sess:
      init_op.run()
      saver.save(sess, os.path.join(chkpt_dir, 'chkpt'))

    # Now, run the evaluation loop:
    accuracy_value = evaluation.evaluation_loop(
        '',
        chkpt_dir,
        logdir,
        eval_op=update_op,
        final_op=value_op,
        max_number_of_evaluations=1)
    self.assertAlmostEqual(accuracy_value, self._expected_accuracy) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:28,代碼來源:evaluation_test.py

示例14: main

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def main():

    if not (os.path.exists(train_set_file) & os.path.exists(validation_set_file)):
        GetLSPData.main()

    if not gfile.Exists(FLAGS.train_dir):
        gfile.MakeDirs(FLAGS.train_dir)
    
    train() 
開發者ID:samitok,項目名稱:deeppose,代碼行數:11,代碼來源:TrainLSP.py

示例15: main

# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import MakeDirs [as 別名]
def main():
    trainSetFileNames = os.path.join(FLAGS.data_dir, FLAGS.trainLabels_fn)
    testSetFileNames = os.path.join(FLAGS.data_dir, FLAGS.testLabels_fn)
    
    if not (os.path.exists(trainSetFileNames) & os.path.exists(testSetFileNames)):
        GetLSPData.main()
        
    #if gfile.Exists(FLAGS.train_dir):
        #gfile.DeleteRecursively(FLAGS.train_dir)
    if not gfile.Exists(FLAGS.train_dir):
        gfile.MakeDirs(FLAGS.train_dir)
    
    train(trainSetFileNames, testSetFileNames) 
開發者ID:samitok,項目名稱:deeppose,代碼行數:15,代碼來源:TrainLSP.py


注:本文中的tensorflow.python.platform.gfile.MakeDirs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。