本文整理匯總了Python中tensorflow.python.platform.gfile.DeleteRecursively方法的典型用法代碼示例。如果您正苦於以下問題:Python gfile.DeleteRecursively方法的具體用法?Python gfile.DeleteRecursively怎麽用?Python gfile.DeleteRecursively使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.platform.gfile
的用法示例。
在下文中一共展示了gfile.DeleteRecursively方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: garbage_collect_exports
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def garbage_collect_exports(export_dir_base, exports_to_keep):
"""Deletes older exports, retaining only a given number of the most recent.
Export subdirectories are assumed to be named with monotonically increasing
integers; the most recent are taken to be those with the largest values.
Args:
export_dir_base: the base directory under which each export is in a
versioned subdirectory.
exports_to_keep: the number of recent exports to retain.
"""
if exports_to_keep is None:
return
keep_filter = gc.largest_export_versions(exports_to_keep)
delete_filter = gc.negation(keep_filter)
for p in delete_filter(gc.get_paths(export_dir_base,
parser=_export_version_parser)):
try:
gfile.DeleteRecursively(p.path)
except errors_impl.NotFoundError as e:
logging.warn('Can not delete %s recursively: %s', p.path, e)
示例2: testLoadExistingVariablesDifferentShapeDefaultDoesNotAllowReshape
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testLoadExistingVariablesDifferentShapeDefaultDoesNotAllowReshape(self):
model_dir = tempfile.mkdtemp('load_existing_vars_no_reshape')
if gfile.Exists(model_dir):
gfile.DeleteRecursively(model_dir)
init_value0 = [[10.0, 11.0]]
init_value1 = 20.0
var_names_to_values = {'v0': init_value0, 'v1': init_value1}
with self.cached_session() as sess:
model_path = self.create_checkpoint_from_values(var_names_to_values,
model_dir)
var0 = variables_lib2.variable('my_var0', shape=[2, 1])
var1 = variables_lib2.variable('my_var1', shape=[])
vars_to_restore = {'v0': var0, 'v1': var1}
init_fn = variables_lib2.assign_from_checkpoint_fn(
model_path, vars_to_restore)
# Initialize the variables.
sess.run(variables_lib.global_variables_initializer())
# Perform the assignment.
with self.assertRaises(errors_impl.InvalidArgumentError):
init_fn(sess)
示例3: get_summary_writer
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def get_summary_writer(tensorboard_dir):
"""Creates a directory for writing summaries and returns a writer."""
tf.logging.info('TensorBoard directory: %s', tensorboard_dir)
tf.logging.info('Deleting prior data if exists...')
try:
gfile.DeleteRecursively(tensorboard_dir)
except errors.OpError as err:
tf.logging.error('Directory did not exist? Error: %s', err)
tf.logging.info('Deleted! Creating the directory again...')
gfile.MakeDirs(tensorboard_dir)
tf.logging.info('Created! Instatiating SummaryWriter...')
summary_writer = tf.summary.FileWriter(tensorboard_dir)
return summary_writer
示例4: tearDownModule
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def tearDownModule():
gfile.DeleteRecursively(test.get_temp_dir())
示例5: garbage_collect_exports
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def garbage_collect_exports(export_dir_base, exports_to_keep):
"""Deletes older exports, retaining only a given number of the most recent.
Export subdirectories are assumed to be named with monotonically increasing
integers; the most recent are taken to be those with the largest values.
Args:
export_dir_base: the base directory under which each export is in a
versioned subdirectory.
exports_to_keep: the number of recent exports to retain.
"""
if exports_to_keep is None:
return
keep_filter = gc.largest_export_versions(exports_to_keep)
delete_filter = gc.negation(keep_filter)
# Export dir must not end with / or it will break the re match below.
if export_dir_base.endswith('/'):
export_dir_base = export_dir_base[:-1]
# create a simple parser that pulls the export_version from the directory.
def parser(path):
match = re.match('^' + export_dir_base + '/(\\d{13})$', path.path)
if not match:
return None
return path._replace(export_version=int(match.group(1)))
for p in delete_filter(gc.get_paths(export_dir_base, parser=parser)):
gfile.DeleteRecursively(p.path)
示例6: main
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def main():
trainSetFileNames = os.path.join(FLAGS.data_dir, FLAGS.trainLabels_fn)
testSetFileNames = os.path.join(FLAGS.data_dir, FLAGS.testLabels_fn)
if not (os.path.exists(trainSetFileNames) & os.path.exists(testSetFileNames)):
GetLSPData.main()
#if gfile.Exists(FLAGS.train_dir):
#gfile.DeleteRecursively(FLAGS.train_dir)
if not gfile.Exists(FLAGS.train_dir):
gfile.MakeDirs(FLAGS.train_dir)
train(trainSetFileNames, testSetFileNames)
示例7: testLoadExistingVariables
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testLoadExistingVariables(self):
model_dir = tempfile.mkdtemp('load_existing_variables')
if gfile.Exists(model_dir):
gfile.DeleteRecursively(model_dir)
init_value0 = 10.0
init_value1 = 20.0
var_names_to_values = {'v0': init_value0, 'v1': init_value1}
with self.cached_session() as sess:
model_path = self.create_checkpoint_from_values(var_names_to_values,
model_dir)
var0 = variables_lib2.variable('my_var0', shape=[])
var1 = variables_lib2.variable('my_var1', shape=[])
vars_to_restore = {'v0': var0, 'v1': var1}
init_fn = variables_lib2.assign_from_checkpoint_fn(
model_path, vars_to_restore)
# Initialize the variables.
sess.run(variables_lib.global_variables_initializer())
# Perform the assignment.
init_fn(sess)
# Request and test the variable values:
self.assertEqual(init_value0, var0.eval())
self.assertEqual(init_value1, var1.eval())
示例8: testLoadExistingVariablesDifferentShapeAllowReshape
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testLoadExistingVariablesDifferentShapeAllowReshape(self):
model_dir = tempfile.mkdtemp(
'load_existing_variables_different_shape_allow_reshape')
if gfile.Exists(model_dir):
gfile.DeleteRecursively(model_dir)
init_value0 = [[10.0, 11.0]]
init_value1 = 20.0
var_names_to_values = {'v0': init_value0, 'v1': init_value1}
with self.cached_session() as sess:
model_path = self.create_checkpoint_from_values(var_names_to_values,
model_dir)
var0 = variables_lib2.variable('my_var0', shape=[2, 1])
var1 = variables_lib2.variable('my_var1', shape=[])
vars_to_restore = {'v0': var0, 'v1': var1}
init_fn = variables_lib2.assign_from_checkpoint_fn(
model_path, vars_to_restore, reshape_variables=True)
# Initialize the variables.
sess.run(variables_lib.global_variables_initializer())
# Perform the assignment.
init_fn(sess)
# Request and test the variable values:
self.assertAllEqual(np.transpose(np.array(init_value0)), var0.eval())
self.assertEqual(init_value1, var1.eval())
示例9: testNotFoundError
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testNotFoundError(self):
model_dir = tempfile.mkdtemp('not_found_error')
if gfile.Exists(model_dir):
gfile.DeleteRecursively(model_dir)
init_value0 = 10.0
init_value1 = 20.0
var_names_to_values = {'v0': init_value0, 'v1': init_value1}
with self.cached_session() as sess:
model_path = self.create_checkpoint_from_values(var_names_to_values,
model_dir)
var0 = variables_lib2.variable('my_var0', shape=[])
var1 = variables_lib2.variable('my_var1', shape=[])
var2 = variables_lib2.variable('my_var2', shape=[])
vars_to_restore = {'v0': var0, 'v1': var1, 'v2': var2}
init_fn = variables_lib2.assign_from_checkpoint_fn(
model_path, vars_to_restore)
# Initialize the variables.
sess.run(variables_lib.global_variables_initializer())
# Perform the assignment.
with self.assertRaises(errors_impl.NotFoundError):
init_fn(sess)
示例10: testMissingVariablesList
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testMissingVariablesList(self):
model_dir = tempfile.mkdtemp('missing_variables_list')
if gfile.Exists(model_dir):
gfile.DeleteRecursively(model_dir)
init_value0 = 10.0
init_value1 = 20.0
var_names_to_values = {'v0': init_value0, 'v1': init_value1}
with self.cached_session() as sess:
model_path = self.create_checkpoint_from_values(var_names_to_values,
model_dir)
var0 = variables_lib2.variable('v0', shape=[])
var1 = variables_lib2.variable('v1', shape=[])
var2 = variables_lib2.variable('v2', shape=[])
vars_to_restore = [var0, var1, var2]
init_fn = variables_lib2.assign_from_checkpoint_fn(
model_path, vars_to_restore, ignore_missing_vars=True)
# Initialize the variables.
sess.run(variables_lib.global_variables_initializer())
# Perform the assignment.
init_fn(sess)
# Request and test the variable values:
self.assertEqual(init_value0, var0.eval())
self.assertEqual(init_value1, var1.eval())
示例11: testSummariesAreFlushedToDisk
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testSummariesAreFlushedToDisk(self):
checkpoint_dir = tempfile.mkdtemp('summaries_are_flushed')
logdir = tempfile.mkdtemp('summaries_are_flushed_eval')
if gfile.Exists(logdir):
gfile.DeleteRecursively(logdir)
# Train a Model to completion:
self._train_model(checkpoint_dir, num_steps=300)
# Create the model (which can be restored).
inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
logistic_classifier(inputs)
names_to_values = {'bread': 3.4, 'cheese': 4.5, 'tomato': 2.0}
for k in names_to_values:
v = names_to_values[k]
summary_lib.scalar(k, v)
evaluation.evaluate_repeatedly(
checkpoint_dir=checkpoint_dir,
hooks=[
evaluation.SummaryAtEndHook(log_dir=logdir),
],
max_number_of_evaluations=1)
self._verify_events(logdir, names_to_values)
示例12: testSummaryAtEndHookWithoutSummaries
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testSummaryAtEndHookWithoutSummaries(self):
logdir = tempfile.mkdtemp('summary_at_end_hook_without_summaires')
if gfile.Exists(logdir):
gfile.DeleteRecursively(logdir)
with ops.Graph().as_default():
# Purposefully don't add any summaries. The hook will just dump the
# GraphDef event.
hook = evaluation.SummaryAtEndHook(log_dir=logdir)
hook.begin()
with self.cached_session() as session:
hook.after_create_session(session, None)
hook.end(session)
self._verify_events(logdir, {})
示例13: main
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def main(argv=None): # pylint: disable=unused-argument
if gfile.Exists(FLAGS.eval_dir):
gfile.DeleteRecursively(FLAGS.eval_dir)
gfile.MakeDirs(FLAGS.eval_dir)
evaluate()
示例14: main
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def main(argv=None): # pylint: disable=unused-argument
if gfile.Exists(FLAGS.train_dir):
gfile.DeleteRecursively(FLAGS.train_dir)
gfile.MakeDirs(FLAGS.train_dir)
train()
示例15: testRecoverSession
# 需要導入模塊: from tensorflow.python.platform import gfile [as 別名]
# 或者: from tensorflow.python.platform.gfile import DeleteRecursively [as 別名]
def testRecoverSession(self):
# Create a checkpoint.
checkpoint_dir = os.path.join(self.get_temp_dir(), "recover_session")
try:
gfile.DeleteRecursively(checkpoint_dir)
except errors.OpError:
pass # Ignore
gfile.MakeDirs(checkpoint_dir)
with tf.Graph().as_default():
v = tf.Variable(1, name="v")
sm = tf.train.SessionManager(ready_op=tf.report_uninitialized_variables())
saver = tf.train.Saver({"v": v})
sess, initialized = sm.recover_session("", saver=saver,
checkpoint_dir=checkpoint_dir)
self.assertFalse(initialized)
sess.run(v.initializer)
self.assertEquals(1, sess.run(v))
saver.save(sess, os.path.join(checkpoint_dir,
"recover_session_checkpoint"))
# Create a new Graph and SessionManager and recover.
with tf.Graph().as_default():
v = tf.Variable(2, name="v")
with self.test_session():
self.assertEqual(False, tf.is_variable_initialized(v).eval())
sm2 = tf.train.SessionManager(
ready_op=tf.report_uninitialized_variables())
saver = tf.train.Saver({"v": v})
sess, initialized = sm2.recover_session("", saver=saver,
checkpoint_dir=checkpoint_dir)
self.assertTrue(initialized)
self.assertEqual(
True, tf.is_variable_initialized(
sess.graph.get_tensor_by_name("v:0")).eval(session=sess))
self.assertEquals(1, sess.run(v))