當前位置: 首頁>>代碼示例>>Python>>正文


Python flags.DEFINE_bool方法代碼示例

本文整理匯總了Python中tensorflow.python.platform.flags.DEFINE_bool方法的典型用法代碼示例。如果您正苦於以下問題:Python flags.DEFINE_bool方法的具體用法?Python flags.DEFINE_bool怎麽用?Python flags.DEFINE_bool使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.platform.flags的用法示例。


在下文中一共展示了flags.DEFINE_bool方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from tensorflow.python.platform import flags [as 別名]
# 或者: from tensorflow.python.platform.flags import DEFINE_bool [as 別名]
def main(model_name, model_type):
    np.random.seed(0)
    assert keras.backend.backend() == "tensorflow"
    set_mnist_flags()

    with tf.device('/gpu:0'):
        flags.DEFINE_bool('NUM_EPOCHS', args.epochs, 'Number of epochs')

        # Get MNIST test data
        X_train, Y_train, X_test, Y_test = data_mnist()

        data_gen = data_gen_mnist(X_train)

        x = K.placeholder((None,
                           FLAGS.IMAGE_ROWS,
                           FLAGS.IMAGE_COLS,
                           FLAGS.NUM_CHANNELS
                           ))

        y = K.placeholder(shape=(None, FLAGS.NUM_CLASSES))

        model = model_mnist(type=model_type)

        print(model.summary())

        # Train an MNIST model
        tf_train(x, y, model, X_train, Y_train, data_gen, None, None)

        # Finally print the result!
        _, _, test_error = tf_test_error_rate(model, x, X_test, Y_test)
        print('Test error: %.1f%%' % test_error)lsm
        save_model(model, model_name)
        json_string = model.to_json()
        with open(model_name+'.json', 'wr') as f:
            f.write(json_string) 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:37,代碼來源:train.py

示例2: main

# 需要導入模塊: from tensorflow.python.platform import flags [as 別名]
# 或者: from tensorflow.python.platform.flags import DEFINE_bool [as 別名]
def main(model_name, model_type):
    np.random.seed(0)
    assert keras.backend.backend() == "tensorflow"
    set_mnist_flags()
    
    flags.DEFINE_bool('NUM_EPOCHS', args.epochs, 'Number of epochs')

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist()

    data_gen = data_gen_mnist(X_train)

    x = K.placeholder((None,
                       FLAGS.IMAGE_ROWS,
                       FLAGS.IMAGE_COLS,
                       FLAGS.NUM_CHANNELS
                       ))

    y = K.placeholder(shape=(None, FLAGS.NUM_CLASSES))

    model = model_mnist(type=model_type)

    # Train an MNIST model
    tf_train(x, y, model, X_train, Y_train, data_gen)

    # Finally print the result!
    test_error = tf_test_error_rate(model, x, X_test, Y_test)
    print('Test error: %.1f%%' % test_error)
    save_model(model, model_name)
    json_string = model.to_json()
    with open(model_name+'.json', 'wr') as f:
        f.write(json_string) 
開發者ID:ftramer,項目名稱:ensemble-adv-training,代碼行數:34,代碼來源:train.py

示例3: main

# 需要導入模塊: from tensorflow.python.platform import flags [as 別名]
# 或者: from tensorflow.python.platform.flags import DEFINE_bool [as 別名]
def main(model_name, adv_model_names, model_type):
    np.random.seed(0)
    assert keras.backend.backend() == "tensorflow"
    set_mnist_flags()

    flags.DEFINE_bool('NUM_EPOCHS', args.epochs, 'Number of epochs')

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist()

    data_gen = data_gen_mnist(X_train)

    x = K.placeholder(shape=(None,
                             FLAGS.IMAGE_ROWS,
                             FLAGS.IMAGE_COLS,
                             FLAGS.NUM_CHANNELS))

    y = K.placeholder(shape=(FLAGS.BATCH_SIZE, FLAGS.NUM_CLASSES))

    eps = args.eps
    norm = args.norm

    # if src_models is not None, we train on adversarial examples that come
    # from multiple models
    adv_models = [None] * len(adv_model_names)
    ens_str = ''
    for i in range(len(adv_model_names)):
        adv_models[i] = load_model(adv_model_names[i])
	if len(adv_models)>0:
	    name = basename(adv_model_names[i])
	    model_index = name.replace('model','')
	    ens_str += model_index
    model = model_mnist(type=model_type)

    x_advs = [None] * (len(adv_models) + 1)

    for i, m in enumerate(adv_models + [model]):
        if args.iter == 0:
            logits = m(x)
            grad = gen_grad(x, logits, y, loss='training')
            x_advs[i] = symbolic_fgs(x, grad, eps=eps)
        elif args.iter == 1:
            x_advs[i] = iter_fgs(m, x, y, steps = 40, alpha = 0.01, eps = args.eps)

    # Train an MNIST model
    tf_train(x, y, model, X_train, Y_train, data_gen, x_advs=x_advs, benign = args.ben)

    # Finally print the result!
    test_error = tf_test_error_rate(model, x, X_test, Y_test)
    print('Test error: %.1f%%' % test_error)
    model_name += '_' + str(eps) + '_' + str(norm) + '_' + ens_str
    if args.iter == 1:
        model_name += 'iter'
    if args.ben == 0:
        model_name += '_nob'
    save_model(model, model_name)
    json_string = model.to_json()
    with open(model_name+'.json', 'wr') as f:
        f.write(json_string) 
開發者ID:sunblaze-ucb,項目名稱:blackbox-attacks,代碼行數:61,代碼來源:train_adv.py

示例4: main

# 需要導入模塊: from tensorflow.python.platform import flags [as 別名]
# 或者: from tensorflow.python.platform.flags import DEFINE_bool [as 別名]
def main(model_name, adv_model_names, model_type):
    np.random.seed(0)
    assert keras.backend.backend() == "tensorflow"
    set_mnist_flags()

    flags.DEFINE_bool('NUM_EPOCHS', args.epochs, 'Number of epochs')

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist()

    data_gen = data_gen_mnist(X_train)

    x = K.placeholder(shape=(None,
                             FLAGS.IMAGE_ROWS,
                             FLAGS.IMAGE_COLS,
                             FLAGS.NUM_CHANNELS))

    y = K.placeholder(shape=(FLAGS.BATCH_SIZE, FLAGS.NUM_CLASSES))

    eps = args.eps

    # if src_models is not None, we train on adversarial examples that come
    # from multiple models
    adv_models = [None] * len(adv_model_names)
    for i in range(len(adv_model_names)):
        adv_models[i] = load_model(adv_model_names[i])

    model = model_mnist(type=model_type)

    x_advs = [None] * (len(adv_models) + 1)

    for i, m in enumerate(adv_models + [model]):
        logits = m(x)
        grad = gen_grad(x, logits, y, loss='training')
        x_advs[i] = symbolic_fgs(x, grad, eps=eps)

    # Train an MNIST model
    tf_train(x, y, model, X_train, Y_train, data_gen, x_advs=x_advs)

    # Finally print the result!
    test_error = tf_test_error_rate(model, x, X_test, Y_test)
    print('Test error: %.1f%%' % test_error)
    save_model(model, model_name)
    json_string = model.to_json()
    with open(model_name+'.json', 'wr') as f:
        f.write(json_string) 
開發者ID:ftramer,項目名稱:ensemble-adv-training,代碼行數:48,代碼來源:train_adv.py


注:本文中的tensorflow.python.platform.flags.DEFINE_bool方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。