本文整理匯總了Python中tensorflow.python.ops.variables.local_variables_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python variables.local_variables_initializer方法的具體用法?Python variables.local_variables_initializer怎麽用?Python variables.local_variables_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.variables
的用法示例。
在下文中一共展示了variables.local_variables_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _init_local_init_op
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
collection. If the collection is empty, create an op that initializes
all local variables and all tables.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(
ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [
variables.local_variables_initializer(),
lookup_ops.tables_initializer()
]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
示例2: main_op
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def main_op():
"""Returns a main op to init variables and tables.
Returns the main op including the group of ops that initializes all
variables, initializes local variables and initialize all tables.
Returns:
The set of ops to be run as part of the main op upon the load operation.
"""
init = variables.global_variables_initializer()
init_local = variables.local_variables_initializer()
init_tables = lookup_ops.tables_initializer()
return control_flow_ops.group(init, init_local, init_tables)
# TODO(sukritiramesh): Integrate with Saver for complete restore functionality.
示例3: _export_graph
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.local_variables_initializer()
lookup_ops.tables_initializer()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(
init_op=control_flow_ops.group(
variables.local_variables_initializer(),
lookup_ops.tables_initializer()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures,
assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS))
return export.export(export_dir, contrib_variables.get_global_step(),
session, exports_to_keep=exports_to_keep)
示例4: _init_local_init_op
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
collection. If the collection is empty, create an op that initializes
all local variables and all tables.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(
ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [variables.local_variables_initializer(),
data_flow_ops.tables_initializer()]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
示例5: testOutOfRangeError
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def testOutOfRangeError(self):
with self.test_session():
[tfrecord_path] = test_utils.create_tfrecord_files(
self.get_temp_dir(), num_files=1)
key, value = parallel_reader.single_pass_read(
tfrecord_path, reader_class=io_ops.TFRecordReader)
init_op = variables.local_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
with queues.QueueRunners(sess):
num_reads = 11
with self.assertRaises(errors_impl.OutOfRangeError):
for _ in range(num_reads):
sess.run([key, value])
示例6: testTFRecordReader
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def testTFRecordReader(self):
with self.test_session():
[tfrecord_path] = test_utils.create_tfrecord_files(
self.get_temp_dir(), num_files=1)
key, value = parallel_reader.single_pass_read(
tfrecord_path, reader_class=io_ops.TFRecordReader)
init_op = variables.local_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
with queues.QueueRunners(sess):
flowers = 0
num_reads = 9
for _ in range(num_reads):
current_key, _ = sess.run([key, value])
if 'flowers' in str(current_key):
flowers += 1
self.assertGreater(flowers, 0)
self.assertEquals(flowers, num_reads)
示例7: testRestoredModelPerformance
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def testRestoredModelPerformance(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/')
# First, save out the current model to a checkpoint:
init_op = control_flow_ops.group(variables.global_variables_initializer(),
variables.local_variables_initializer())
saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V1)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
# Next, determine the metric to evaluate:
value_op, update_op = metric_ops.streaming_accuracy(self._predictions,
self._labels)
# Run the evaluation and verify the results:
accuracy_value = evaluation.evaluate_once(
'', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op)
self.assertAlmostEqual(accuracy_value, self._expected_accuracy)
示例8: testTop3
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def testTop3(self):
top_3_fn = eval_metrics._top_k_generator(3)
probabilities = constant_op.constant([[0.1, 0.2, 0.6, 0.3, 0.5, 0.5],
[0.1, 0.4, 0.7, 0.3, 0.5, 0.2],
[0.1, 0.3, 0.8, 0.7, 0.4, 0.9],
[0.9, 0.8, 0.1, 0.8, 0.2, 0.7],
[0.3, 0.6, 0.9, 0.4, 0.8, 0.6]])
targets = constant_op.constant([3, 0, 2, 5, 1])
in_top_3_op, update_op = top_3_fn(probabilities, targets)
with self.test_session():
# initializes internal accuracy vars
variables.local_variables_initializer().run()
# need to call in order to run the in_top_3_op internal operations because
# it is a streaming function
update_op.eval()
self.assertNear(0.4, in_top_3_op.eval(), 0.0001)
示例9: _export_graph
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.local_variables_initializer()
data_flow_ops.tables_initializer()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(init_op=control_flow_ops.group(
variables.local_variables_initializer(),
data_flow_ops.tables_initializer()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures,
assets_collection=ops.get_collection(
ops.GraphKeys.ASSET_FILEPATHS))
return export.export(export_dir, contrib_variables.get_global_step(),
session, exports_to_keep=exports_to_keep)
示例10: testValueTensorIsIdempotent
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def testValueTensorIsIdempotent(self):
predictions = random_ops.random_uniform(
(10, 3), maxval=1, dtype=dtypes.float32, seed=1)
labels = random_ops.random_uniform(
(10, 3), maxval=2, dtype=dtypes.int64, seed=2)
f1, f1_op = classification.f1_score(predictions, labels, num_thresholds=3)
with self.cached_session() as sess:
sess.run(variables.local_variables_initializer())
# Run several updates.
for _ in range(10):
sess.run([f1_op])
# Then verify idempotency.
initial_f1 = f1.eval()
for _ in range(10):
self.assertAllClose(initial_f1, f1.eval())
示例11: testTFRecordReader
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def testTFRecordReader(self):
with self.cached_session():
[tfrecord_path] = test_utils.create_tfrecord_files(
tempfile.mkdtemp(), num_files=1)
key, value = parallel_reader.single_pass_read(
tfrecord_path, reader_class=io_ops.TFRecordReader)
init_op = variables.local_variables_initializer()
with self.cached_session() as sess:
sess.run(init_op)
with queues.QueueRunners(sess):
flowers = 0
num_reads = 9
for _ in range(num_reads):
current_key, _ = sess.run([key, value])
if 'flowers' in str(current_key):
flowers += 1
self.assertGreater(flowers, 0)
self.assertEqual(flowers, num_reads)
示例12: _init_local_init_op
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def _init_local_init_op(self, local_init_op=USE_DEFAULT):
"""Initializes local_init_op.
Args:
local_init_op: `Operation` run for every new supervisor instance. If set
to USE_DEFAULT, use the first op from the GraphKeys.LOCAL_INIT_OP
collection. If the collection is empty, create an op that initializes
all local variables and all tables.
"""
if local_init_op is Supervisor.USE_DEFAULT:
local_init_op = self._get_first_op_from_collection(
ops.GraphKeys.LOCAL_INIT_OP)
if local_init_op is None:
op_list = [variables.local_variables_initializer(),
data_flow_ops.initialize_all_tables()]
if op_list:
local_init_op = control_flow_ops.group(*op_list)
ops.add_to_collection(ops.GraphKeys.LOCAL_INIT_OP, local_init_op)
self._local_init_op = local_init_op
示例13: _export_graph
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.local_variables_initializer()
data_flow_ops.initialize_all_tables()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(init_op=control_flow_ops.group(
variables.local_variables_initializer(),
data_flow_ops.initialize_all_tables()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures,
assets_collection=ops.get_collection(
ops.GraphKeys.ASSET_FILEPATHS))
return export.export(export_dir, contrib_variables.get_global_step(),
session, exports_to_keep=exports_to_keep)
示例14: _run_eval
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def _run_eval(self):
"""Run model evaluation and generate summaries."""
coord = tf.train.Coordinator(clean_stop_exception_types=(
tf.errors.CancelledError, tf.errors.OutOfRangeError))
with tf.Session(graph=self._graph) as session:
# Restores previously saved variables from latest checkpoint
self._saver.restore(session, self._latest_checkpoint)
session.run([
tf.tables_initializer(),
tf.local_variables_initializer()])
tf.train.start_queue_runners(coord=coord, sess=session)
train_step = session.run(self._gs)
tf.logging.info(
'Starting Evaluation For Step: {}'.format(train_step))
with coord.stop_on_exception():
eval_step = 0
while not coord.should_stop() and (self._eval_steps is None or
eval_step <
self._eval_steps):
summaries, final_values, _ = session.run(
[self._summary_op, self._final_ops_dict,
self._eval_ops])
if eval_step % 100 == 0:
tf.logging.info(
'On Evaluation Step: {}'.format(eval_step))
eval_step += 1
# Write the summaries
self._file_writer.add_summary(summaries, global_step=train_step)
self._file_writer.flush()
tf.logging.info(final_values)
示例15: main_op
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import local_variables_initializer [as 別名]
def main_op():
init_local = variables.local_variables_initializer()
init_tables = lookup_ops.tables_initializer()
return control_flow_ops.group(init_local, init_tables)