當前位置: 首頁>>代碼示例>>Python>>正文


Python variables.global_variables_initializer方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.variables.global_variables_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python variables.global_variables_initializer方法的具體用法?Python variables.global_variables_initializer怎麽用?Python variables.global_variables_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.variables的用法示例。


在下文中一共展示了variables.global_variables_initializer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _init_init_op

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def _init_init_op(self, init_op=USE_DEFAULT, init_feed_dict=None):
    """Initializes init_op.

    Args:
      init_op: `Operation` to initialize the variables. If set to USE_DEFAULT,
        create an op that initializes all variables and tables.
      init_feed_dict: A dictionary that maps `Tensor` objects to feed values.
        This feed dictionary will be used when `init_op` is evaluated.
    """
    if init_op is Supervisor.USE_DEFAULT:
      init_op = self._get_first_op_from_collection(ops.GraphKeys.INIT_OP)
      if init_op is None:
        init_op = variables.global_variables_initializer()
        ops.add_to_collection(ops.GraphKeys.INIT_OP, init_op)
    self._init_op = init_op
    self._init_feed_dict = init_feed_dict 
開發者ID:yuantailing,項目名稱:ctw-baseline,代碼行數:18,代碼來源:supervisor.py

示例2: testDebugCondWatchingWholeGraphWorks

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testDebugCondWatchingWholeGraphWorks(self):
    with session.Session() as sess:
      x = variables.Variable(10.0, name="x")
      y = variables.Variable(20.0, name="y")
      cond = control_flow_ops.cond(
          x > y, lambda: math_ops.add(x, 1), lambda: math_ops.add(y, 1))

      sess.run(variables.global_variables_initializer())

      run_options = config_pb2.RunOptions(output_partition_graphs=True)
      debug_utils.watch_graph(run_options,
                              sess.graph,
                              debug_urls=self._debug_urls())
      run_metadata = config_pb2.RunMetadata()
      self.assertEqual(
          21, sess.run(cond, options=run_options, run_metadata=run_metadata))

      dump = debug_data.DebugDumpDir(
          self._dump_root, partition_graphs=run_metadata.partition_graphs)
      self.assertAllClose(
          [21.0], dump.get_tensors("cond/Merge", 0, "DebugIdentity")) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:session_debug_testlib.py

示例3: main_op

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def main_op():
  """Returns a main op to init variables and tables.

  Returns the main op including the group of ops that initializes all
  variables, initializes local variables and initialize all tables.

  Returns:
    The set of ops to be run as part of the main op upon the load operation.
  """
  init = variables.global_variables_initializer()
  init_local = variables.local_variables_initializer()
  init_tables = lookup_ops.tables_initializer()
  return control_flow_ops.group(init, init_local, init_tables)


# TODO(sukritiramesh): Integrate with Saver for complete restore functionality. 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:main_op_impl.py

示例4: setUp

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def setUp(self):
    self.a = variables.Variable(2.0, name="a")
    self.b = variables.Variable(3.0, name="b")

    self.c = math_ops.multiply(self.a, self.b, name="c")  # Should be 6.0.
    self.d = math_ops.multiply(self.a, self.a, name="d")  # Should be 4.0.

    self.e = math_ops.multiply(self.d, self.c, name="e")  # Should be 24.0.

    self.f_y = constant_op.constant(0.30, name="f_y")
    self.f = math_ops.div(self.b, self.f_y, name="f")  # Should be 10.0.

    # The there nodes x, y and z form a graph with "cross-links" in. I.e., x
    # and y are both direct inputs to z, but x is also a direct input to y.
    self.x = variables.Variable(2.0, name="x")  # Should be 2.0
    self.y = math_ops.negative(self.x, name="y")  # Should be -2.0.

    self.z = math_ops.multiply(self.x, self.y, name="z")  # Should be -4.0.

    self.sess = session.Session()
    self.sess.run(variables.global_variables_initializer())

    self.sess = session.Session()
    self.sess.run(variables.global_variables_initializer()) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:stepper_test.py

示例5: testAtrousFullyConvolutionalValues

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testAtrousFullyConvolutionalValues(self):
    """Verify dense feature extraction with atrous convolution."""
    nominal_stride = 32
    for output_stride in [4, 8, 16, 32, None]:
      with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
        with ops.Graph().as_default():
          with self.test_session() as sess:
            random_seed.set_random_seed(0)
            inputs = create_test_input(2, 81, 81, 3)
            # Dense feature extraction followed by subsampling.
            output, _ = self._resnet_small(
                inputs, None, global_pool=False, output_stride=output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride
            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            variable_scope.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected, _ = self._resnet_small(inputs, None, global_pool=False)
            sess.run(variables.global_variables_initializer())
            self.assertAllClose(
                output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:resnet_v2_test.py

示例6: testUnknownBatchSize

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testUnknownBatchSize(self):
    batch = 2
    height, width = 65, 65
    global_pool = True
    num_classes = 10
    inputs = create_test_input(None, height, width, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      logits, _ = self._resnet_small(
          inputs, num_classes, global_pool, scope='resnet')
    self.assertTrue(logits.op.name.startswith('resnet/logits'))
    self.assertListEqual(logits.get_shape().as_list(),
                         [None, 1, 1, num_classes])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      output = sess.run(logits, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 1, 1, num_classes)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:19,代碼來源:resnet_v1_test.py

示例7: testUnknownImageShape

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testUnknownImageShape(self):
    ops.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = array_ops.placeholder(
          dtypes.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception_v2.inception_v2(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV2/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      variables.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:inception_v2_test.py

示例8: testUnknownImageShape

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testUnknownImageShape(self):
    ops.reset_default_graph()
    batch_size = 2
    height, width = 299, 299
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = array_ops.placeholder(
          dtypes.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception_v3.inception_v3(inputs, num_classes)
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_7c']
      feed_dict = {inputs: input_np}
      variables.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 8, 2048]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:19,代碼來源:inception_v3_test.py

示例9: testTrainEvalWithReuse

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 150, 150
    num_classes = 1000

    train_inputs = random_ops.random_uniform(
        (train_batch_size, height, width, 3))
    inception_v3.inception_v3(train_inputs, num_classes)
    eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception_v3.inception_v3(
        eval_inputs, num_classes, is_training=False, reuse=True)
    predictions = math_ops.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:inception_v3_test.py

示例10: testUnknownImageShape

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testUnknownImageShape(self):
    ops.reset_default_graph()
    batch_size = 2
    height, width = 224, 224
    num_classes = 1000
    input_np = np.random.uniform(0, 1, (batch_size, height, width, 3))
    with self.test_session() as sess:
      inputs = array_ops.placeholder(
          dtypes.float32, shape=(batch_size, None, None, 3))
      logits, end_points = inception_v1.inception_v1(inputs, num_classes)
      self.assertTrue(logits.op.name.startswith('InceptionV1/Logits'))
      self.assertListEqual(logits.get_shape().as_list(),
                           [batch_size, num_classes])
      pre_pool = end_points['Mixed_5c']
      feed_dict = {inputs: input_np}
      variables.global_variables_initializer().run()
      pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict)
      self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:inception_v1_test.py

示例11: testTrainEvalWithReuse

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testTrainEvalWithReuse(self):
    train_batch_size = 5
    eval_batch_size = 2
    height, width = 224, 224
    num_classes = 1000

    train_inputs = random_ops.random_uniform(
        (train_batch_size, height, width, 3))
    inception_v1.inception_v1(train_inputs, num_classes)
    eval_inputs = random_ops.random_uniform((eval_batch_size, height, width, 3))
    logits, _ = inception_v1.inception_v1(eval_inputs, num_classes, reuse=True)
    predictions = math_ops.argmax(logits, 1)

    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      output = sess.run(predictions)
      self.assertEquals(output.shape, (eval_batch_size,)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:19,代碼來源:inception_v1_test.py

示例12: testRestoredModelPerformance

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testRestoredModelPerformance(self):
    checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
    log_dir = os.path.join(self.get_temp_dir(), 'log_dir1/')

    # First, save out the current model to a checkpoint:
    init_op = control_flow_ops.group(variables.global_variables_initializer(),
                                     variables.local_variables_initializer())
    saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V1)
    with self.test_session() as sess:
      sess.run(init_op)
      saver.save(sess, checkpoint_path)

    # Next, determine the metric to evaluate:
    value_op, update_op = metric_ops.streaming_accuracy(self._predictions,
                                                        self._labels)

    # Run the evaluation and verify the results:
    accuracy_value = evaluation.evaluate_once(
        '', checkpoint_path, log_dir, eval_op=update_op, final_op=value_op)
    self.assertAlmostEqual(accuracy_value, self._expected_accuracy) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:evaluation_test.py

示例13: testUseGlobalStep

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testUseGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = BatchNormClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)

      global_step = variables_lib2.get_or_create_global_step()

      with session.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # After 10 updates global_step should be 10.
        self.assertAllClose(global_step, 10) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:26,代碼來源:learning_test.py

示例14: testNoneGlobalStep

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def testNoneGlobalStep(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = BatchNormClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(
          total_loss, optimizer, global_step=None)

      global_step = variables_lib2.get_or_create_global_step()

      with session.Session() as sess:
        # Initialize all variables
        sess.run(variables_lib.global_variables_initializer())

        for _ in range(10):
          sess.run([train_op])
        global_step = global_step.eval()
        # Since train_op don't use global_step it shouldn't change.
        self.assertAllClose(global_step, 0) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:27,代碼來源:learning_test.py

示例15: setUp

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import global_variables_initializer [as 別名]
def setUp(self):
    self.base_path = os.path.join(test.get_temp_dir(), "no_vars")
    if not os.path.exists(self.base_path):
      os.mkdir(self.base_path)

    # Create a simple graph with a variable, then convert variables to
    # constants and export the graph.
    with ops.Graph().as_default() as g:
      x = array_ops.placeholder(dtypes.float32, name="x")
      w = variables.Variable(3.0)
      y = math_ops.subtract(w * x, 7.0, name="y")  # pylint: disable=unused-variable
      ops.add_to_collection("meta", "this is meta")

      with self.test_session(graph=g) as session:
        variables.global_variables_initializer().run()
        new_graph_def = graph_util.convert_variables_to_constants(
            session, g.as_graph_def(), ["y"])

      filename = os.path.join(self.base_path, constants.META_GRAPH_DEF_FILENAME)
      saver.export_meta_graph(
          filename, graph_def=new_graph_def, collection_list=["meta"]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:23,代碼來源:session_bundle_test.py


注:本文中的tensorflow.python.ops.variables.global_variables_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。