本文整理匯總了Python中tensorflow.python.ops.variables._all_saveable_objects方法的典型用法代碼示例。如果您正苦於以下問題:Python variables._all_saveable_objects方法的具體用法?Python variables._all_saveable_objects怎麽用?Python variables._all_saveable_objects使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.variables
的用法示例。
在下文中一共展示了variables._all_saveable_objects方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _is_graph_frozen
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import _all_saveable_objects [as 別名]
def _is_graph_frozen() -> bool:
"""
Checks if graph in current graph is frozen
:return: `True` or `False`
"""
from tensorflow.python.ops import variables
return not bool(variables._all_saveable_objects())
示例2: _get_saveable_variables
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import _all_saveable_objects [as 別名]
def _get_saveable_variables(exclude_scopes=tuple()):
# noinspection PyProtectedMember
all_vars = variables._all_saveable_objects()
vars_to_train = [var for var in all_vars if all(sc not in var.name for sc in exclude_scopes)]
return vars_to_train
示例3: add_meta_graph
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import _all_saveable_objects [as 別名]
def add_meta_graph(self,
tags,
signature_def_map=None,
assets_collection=None,
legacy_init_op=None,
clear_devices=False,
main_op=None):
"""Adds the current meta graph to the SavedModel.
Creates a Saver in the current scope and uses the Saver to export the meta
graph def. Invoking this API requires the `add_meta_graph_and_variables()`
API to have been invoked before.
Args:
tags: The set of tags to annotate the meta graph def with.
signature_def_map: The map of signature defs to be added to the meta graph
def.
assets_collection: Assets collection to be saved with SavedModel. Note
that this collection should be a subset of the assets saved as part of
the first meta graph in the SavedModel.
legacy_init_op: Legacy support for op or group of ops to execute after the
restore op upon a load.
clear_devices: Set to true if the device info on the default graph should
be cleared.
main_op: Op or group of ops to execute when the graph is loaded.
Raises:
AssertionError: If the variables for the SavedModel have not been saved
yet.
"""
if not self._has_saved_variables:
raise AssertionError(
"Graph state including variables and assets has not been saved yet. "
"Please invoke `add_meta_graph_and_variables()` first.")
# Validate the signature def map to ensure all included TensorInfos are
# properly populated.
self._validate_signature_def_map(signature_def_map)
# Save asset files and write them to disk, if any.
self._save_and_write_assets(assets_collection)
if main_op is None:
# Add legacy init op to the SavedModel.
self._maybe_add_legacy_init_op(legacy_init_op)
else:
self._add_main_op(main_op)
# Initialize a saver to generate a sharded output for all saveables in the
# current scope.
saver = tf_saver.Saver(
variables._all_saveable_objects(), # pylint: disable=protected-access
sharded=True,
write_version=saver_pb2.SaverDef.V2,
allow_empty=True)
meta_graph_def = saver.export_meta_graph(clear_devices=clear_devices)
# Tag the meta graph def and add it to the SavedModel.
self._tag_and_add_meta_graph(meta_graph_def, tags, signature_def_map)
示例4: build
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import _all_saveable_objects [as 別名]
def build(self):
"""Builds saver_def."""
if self._is_built:
return
self._is_built = True
if not self.saver_def:
if self._builder is None:
self._builder = BaseSaverBuilder(self._write_version)
if self._var_list is None:
# pylint: disable=protected-access
self._var_list = variables._all_saveable_objects()
if not self._var_list:
if self._allow_empty:
self._is_empty = True
return
else:
raise ValueError("No variables to save")
self._is_empty = False
self.saver_def = self._builder.build(
self._var_list,
reshape=self._reshape,
sharded=self._sharded,
max_to_keep=self._max_to_keep,
keep_checkpoint_every_n_hours=self._keep_checkpoint_every_n_hours,
name=self._name,
restore_sequentially=self._restore_sequentially)
elif self.saver_def and self._name:
# Since self._name is used as a name_scope by builder(), we are
# overloading the use of this field to represent the "import_scope" as
# well.
self.saver_def.filename_tensor_name = ops.prepend_name_scope(
self.saver_def.filename_tensor_name, self._name)
self.saver_def.save_tensor_name = ops.prepend_name_scope(
self.saver_def.save_tensor_name, self._name)
self.saver_def.restore_op_name = ops.prepend_name_scope(
self.saver_def.restore_op_name, self._name)
self._check_saver_def()
# Updates next checkpoint time.
self._next_checkpoint_time = (
time.time() + self.saver_def.keep_checkpoint_every_n_hours * 3600)
self._last_checkpoints = []
示例5: _build
# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import _all_saveable_objects [as 別名]
def _build(self, checkpoint_path, build_save, build_restore):
"""Builds saver_def."""
if context.in_graph_mode():
if self._is_built:
return
self._is_built = True
if not self.saver_def or context.in_eager_mode():
if self._builder is None:
self._builder = BaseSaverBuilder(self._write_version)
if self._var_list is None:
# pylint: disable=protected-access
self._var_list = variables._all_saveable_objects()
if not self._var_list:
if self._allow_empty:
self._is_empty = True
return
else:
raise ValueError("No variables to save")
self._is_empty = False
self.saver_def = self._builder._build_internal( # pylint: disable=protected-access
self._var_list,
reshape=self._reshape,
sharded=self._sharded,
max_to_keep=self._max_to_keep,
keep_checkpoint_every_n_hours=self._keep_checkpoint_every_n_hours,
name=self._name,
restore_sequentially=self._restore_sequentially,
filename=checkpoint_path,
build_save=build_save, build_restore=build_restore)
elif self.saver_def and self._name:
# Since self._name is used as a name_scope by builder(), we are
# overloading the use of this field to represent the "import_scope" as
# well.
self.saver_def.filename_tensor_name = ops.prepend_name_scope(
self.saver_def.filename_tensor_name, self._name)
self.saver_def.save_tensor_name = ops.prepend_name_scope(
self.saver_def.save_tensor_name, self._name)
self.saver_def.restore_op_name = ops.prepend_name_scope(
self.saver_def.restore_op_name, self._name)
self._check_saver_def()
# Updates next checkpoint time.
self._next_checkpoint_time = (
time.time() + self.saver_def.keep_checkpoint_every_n_hours * 3600)
self._last_checkpoints = []
self._checkpoints_to_be_deleted = []
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:50,代碼來源:saver.py