當前位置: 首頁>>代碼示例>>Python>>正文


Python variables.Variable方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.variables.Variable方法的典型用法代碼示例。如果您正苦於以下問題:Python variables.Variable方法的具體用法?Python variables.Variable怎麽用?Python variables.Variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.variables的用法示例。


在下文中一共展示了variables.Variable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testEmbeddingOp

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def testEmbeddingOp(self):
    graph = tf.Graph()
    with self.test_session(graph=graph):
      params = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]],
                           tf.float32)

      var = variables.Variable([self.MakeSparseFeatures([1, 2], [1.0, 1.0]),
                                self.MakeSparseFeatures([], [])])
      var.initializer.run()
      embeddings = graph_builder.EmbeddingLookupFeatures(params, var,
                                                         True).eval()
      self.assertAllClose([[8.0, 10.0], [0.0, 0.0]], embeddings)

      var = variables.Variable([self.MakeSparseFeatures([], []),
                                self.MakeSparseFeatures([0, 2],
                                                        [0.5, 2.0])])
      var.initializer.run()
      embeddings = graph_builder.EmbeddingLookupFeatures(params, var,
                                                         True).eval()
      self.assertAllClose([[0.0, 0.0], [10.5, 13.0]], embeddings) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:graph_builder_test.py

示例2: _underlying_variable_ref

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _underlying_variable_ref(t):
  """Find the underlying variable ref.

  Traverses through Identity, ReadVariableOp, and Enter ops.
  Stops when op type has Variable or VarHandle in name.

  Args:
    t: a Tensor

  Returns:
    a Tensor that is a variable ref, or None on error.
  """
  while t.op.type in ["Identity", "ReadVariableOp", "Enter"]:
    t = t.op.inputs[0]

  op_type = t.op.type
  if "Variable" in op_type or "VarHandle" in op_type:
    return t
  else:
    return None 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:22,代碼來源:rev_block_lib.py

示例3: _create_local

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _create_local(name, shape, collections=None, validate_shape=True,
                  dtype=tf.float32):
    """Creates a new local variable.
    Args:
        name: The name of the new or existing variable.
        shape: Shape of the new or existing variable.
        collections: A list of collection names to which the Variable will be added.
        validate_shape: Whether to validate the shape of the variable.
        dtype: Data type of the variables.
    Returns:
        The created variable.
    """
    # Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
    collections = list(collections or [])
    collections += [ops.GraphKeys.LOCAL_VARIABLES]
    return variables.Variable(
            initial_value=array_ops.zeros(shape, dtype=dtype),
            name=name,
            trainable=False,
            collections=collections,
            validate_shape=validate_shape) 
開發者ID:dengdan,項目名稱:seglink,代碼行數:23,代碼來源:metrics.py

示例4: testDebugCondWatchingWholeGraphWorks

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def testDebugCondWatchingWholeGraphWorks(self):
    with session.Session() as sess:
      x = variables.Variable(10.0, name="x")
      y = variables.Variable(20.0, name="y")
      cond = control_flow_ops.cond(
          x > y, lambda: math_ops.add(x, 1), lambda: math_ops.add(y, 1))

      sess.run(variables.global_variables_initializer())

      run_options = config_pb2.RunOptions(output_partition_graphs=True)
      debug_utils.watch_graph(run_options,
                              sess.graph,
                              debug_urls=self._debug_urls())
      run_metadata = config_pb2.RunMetadata()
      self.assertEqual(
          21, sess.run(cond, options=run_options, run_metadata=run_metadata))

      dump = debug_data.DebugDumpDir(
          self._dump_root, partition_graphs=run_metadata.partition_graphs)
      self.assertAllClose(
          [21.0], dump.get_tensors("cond/Merge", 0, "DebugIdentity")) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:session_debug_testlib.py

示例5: _get_fetch_names

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _get_fetch_names(fetches):
  """Get a flattened list of the names in run() call fetches.

  Args:
    fetches: Fetches of the `Session.run()` call. It maybe a Tensor, an
      Operation or a Variable. It may also be nested lists, tuples or
      dicts. See doc of `Session.run()` for more details.

  Returns:
    (list of str) A flattened list of fetch names from `fetches`.
  """

  lines = []
  if isinstance(fetches, (list, tuple)):
    for fetch in fetches:
      lines.extend(_get_fetch_names(fetch))
  elif isinstance(fetches, dict):
    for key in fetches:
      lines.extend(_get_fetch_names(fetches[key]))
  else:
    # This ought to be a Tensor, an Operation or a Variable, for which the name
    # attribute should be available. (Bottom-out condition of the recursion.)
    lines.append(_get_fetch_name(fetches))

  return lines 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:cli_shared.py

示例6: variable

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def variable(initial_value=None,
             trainable=True,
             collections=None,
             validate_shape=True,
             caching_device=None,
             name=None,
             dtype=None):
  if get_variable_scope().use_resource:
    return resource_variable_ops.ResourceVariable(
        initial_value=initial_value, trainable=trainable,
        collections=collections, validate_shape=validate_shape,
        caching_device=caching_device, name=name, dtype=dtype)
  else:
    return variables.Variable(
        initial_value=initial_value, trainable=trainable,
        collections=collections, validate_shape=validate_shape,
        caching_device=caching_device, name=name, dtype=dtype) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:variable_scope.py

示例7: _apply_sparse

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _apply_sparse(self, grad, var):
    """Add ops to apply sparse gradients to `var`.

    The IndexedSlices object passed to `grad` in this function is by default
    pre-processed in `_apply_sparse_duplicate_indices` to remove duplicate
    indices (see its docstring for details). Optimizers which can tolerate or
    have correct special cases for duplicate sparse indices may override
    `_apply_sparse_duplicate_indices` instead of this function, avoiding that
    overhead.

    Args:
      grad: `IndexedSlices`, with no repeated indices.
      var: A `Variable` object.

    Return:
      An `Operation`.
    """
    raise NotImplementedError() 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:optimizer.py

示例8: _get_or_make_slot_with_initializer

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _get_or_make_slot_with_initializer(self, var, initializer, shape, dtype,
                                         slot_name, op_name):
    """Find or create a slot for a variable, using an Initializer.

    Args:
      var: A `Variable` object.
      initializer: An `Initializer`.  The initial value of the slot.
      shape: Shape of the initial value of the slot.
      dtype: Type of the value of the slot.
      slot_name: Name for the slot.
      op_name: Name to use when scoping the Variable that
        needs to be created for  the slot.

    Returns:
      A `Variable` object.
    """
    named_slots = self._slot_dict(slot_name)
    if _var_key(var) not in named_slots:
      named_slots[_var_key(var)] = slot_creator.create_slot_with_initializer(
          var, initializer, shape, dtype, op_name)
    return named_slots[_var_key(var)] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:optimizer.py

示例9: _zeros_slot

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _zeros_slot(self, var, slot_name, op_name):
    """Find or create a slot initialized with 0.0.

    Args:
      var: A `Variable` object.
      slot_name: Name for the slot.
      op_name: Name to use when scoping the Variable that
        needs to be created for  the slot.

    Returns:
      A `Variable` object.
    """
    named_slots = self._slot_dict(slot_name)
    if _var_key(var) not in named_slots:
      named_slots[_var_key(var)] = slot_creator.create_zeros_slot(var, op_name)
    return named_slots[_var_key(var)] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:optimizer.py

示例10: _set_checkpoint_initializer

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _set_checkpoint_initializer(variable,
                                ckpt_file,
                                tensor_name,
                                slice_spec,
                                name="checkpoint_initializer"):
  """Overrides given variable's initialization op.

  Sets variable initializer to assign op that initializes variable from tensor's
  value in the checkpoint.

  Args:
    variable: `tf.Variable` object.
    ckpt_file: string, full path of the checkpoint.
    tensor_name: Name of the tensor to load from the checkpoint.
    slice_spec: Slice specification for loading partitioned tensors.
    name: Name of the operation.
  """
  base_type = variable.dtype.base_dtype
  restore_op = io_ops.restore_v2(
      ckpt_file, [tensor_name], [slice_spec], [base_type], name=name)[0]
  variable._initializer_op = state_ops.assign(variable, restore_op)  # pylint:disable=protected-access 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:checkpoint_utils.py

示例11: global_step

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def global_step(sess, global_step_tensor):
  """Small helper to get the global step.

  ```python
  # Creates a variable to hold the global_step.
  global_step_tensor = tf.Variable(10, trainable=False, name='global_step')
  # Creates a session.
  sess = tf.Session()
  # Initializes the variable.
  print('global_step: %s' % tf.train.global_step(sess, global_step_tensor))

  global_step: 10
  ```

  Args:
    sess: A TensorFlow `Session` object.
    global_step_tensor:  `Tensor` or the `name` of the operation that contains
      the global step.

  Returns:
    The global step value.
  """
  return int(sess.run(global_step_tensor)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:training_util.py

示例12: assert_global_step

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def assert_global_step(global_step_tensor):
  """Asserts `global_step_tensor` is a scalar int `Variable` or `Tensor`.

  Args:
    global_step_tensor: `Tensor` to test.
  """
  if not (isinstance(global_step_tensor, variables.Variable) or
          isinstance(global_step_tensor, ops.Tensor) or
          isinstance(global_step_tensor,
                     resource_variable_ops.ResourceVariable)):
    raise TypeError(
        'Existing "global_step" must be a Variable or Tensor: %s.' %
        global_step_tensor)

  if not global_step_tensor.dtype.base_dtype.is_integer:
    raise TypeError('Existing "global_step" does not have integer type: %s' %
                    global_step_tensor.dtype)

  if global_step_tensor.get_shape().ndims != 0:
    raise TypeError('Existing "global_step" is not scalar: %s' %
                    global_step_tensor.get_shape()) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:training_util.py

示例13: constant_value

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def constant_value(pred):
  """Return the bool value for `pred`, or None if `pred` had a dynamic value.

  Arguments:
    pred: A scalar, either a Python bool or a TensorFlow boolean variable
      or tensor.

  Returns:
    True or False if `pred` has a constant boolean value, None otherwise.

  Raises:
    TypeError is pred is not a Variable, Tensor or bool.
  """
  if isinstance(pred, bool):
    pred_value = pred
  elif isinstance(pred, variables.Variable):
    pred_value = None
  elif isinstance(pred, ops.Tensor):
    pred_value = tensor_util.constant_value(pred)
  else:
    raise TypeError('`pred` must be a Tensor, a Variable, or a Python bool.')
  return pred_value 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:utils.py

示例14: _prepare_gramian

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def _prepare_gramian(self, factors, gramian):
    """Helper function to create ops to prepare/calculate gramian.

    Args:
      factors: Variable or list of Variable representing (sharded) factors.
        Used to compute the updated corresponding gramian value.
      gramian: Variable storing the gramian calculated from the factors.

    Returns:
      A op that updates the gramian with the calcuated value from the factors.
    """
    partial_gramians = []
    for f in factors:
      with ops.colocate_with(f):
        partial_gramians.append(math_ops.matmul(f, f, transpose_a=True))

    with ops.colocate_with(gramian):
      prep_gramian = state_ops.assign(gramian,
                                      math_ops.add_n(partial_gramians)).op

    return prep_gramian 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:factorization_ops.py

示例15: record_variable_inits

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import Variable [as 別名]
def record_variable_inits(self):
    """Context manager to record Variable initializations.

    Sets _in_variable_creation to True before a Variable is initialized.

    NOTE(keveman): This is used for recording the list of assign ops
    that are used to initialize variables. It relies on the fact that
    the constructor of Variable class creates exactly one assign op that is
    used for initializing the variable. Variable ops not created using the
    variables.Variable class are not added to _init_ops and hence not
    initialized automatically.

    """
    old_init = getattr(variables.Variable, '__init__')

    def record(*args, **kwargs):
      self._in_variable_creation = True
      old_init(*args, **kwargs)
      self._in_variable_creation = False

    setattr(variables.Variable, '__init__', record)
    yield
    setattr(variables.Variable, '__init__', old_init)
  # pylint: enable=g-doc-return-or-yield 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:imperative_graph.py


注:本文中的tensorflow.python.ops.variables.Variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。