當前位置: 首頁>>代碼示例>>Python>>正文


Python variables.PartitionedVariable方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.variables.PartitionedVariable方法的典型用法代碼示例。如果您正苦於以下問題:Python variables.PartitionedVariable方法的具體用法?Python variables.PartitionedVariable怎麽用?Python variables.PartitionedVariable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.variables的用法示例。


在下文中一共展示了variables.PartitionedVariable方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testPartitionedVariable

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def testPartitionedVariable(self):
    with tf.Graph().as_default():
      v0 = tf.Variable([0])
      v1 = tf.Variable([1])
      v0._set_save_slice_info(variables.Variable.SaveSliceInfo(
          v0.name, [2], [0], [1]))
      v1._set_save_slice_info(variables.Variable.SaveSliceInfo(
          v0.name, [2], [1], [1]))
      partitions = [2]

      # Pass variable_list as [v1, v0] to ensure they are properly
      # re-sorted to [v0, v1] based on their slice info offsets.
      partitioned_variable = variables.PartitionedVariable(
          name="two_vars",
          shape=[2],
          dtype=v0.dtype,
          variable_list=[v1, v0],
          partitions=partitions)

      concatenated = tf.convert_to_tensor(partitioned_variable)
      num_partitions = len(partitioned_variable)
      iterated_partitions = list(partitioned_variable)
      self.assertEqual(2, num_partitions)
      self.assertEqual([v0, v1], iterated_partitions)
      self.assertEqual([2], concatenated.get_shape()) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:variables_test.py

示例2: _add_variable_to_collections

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _add_variable_to_collections(variable, collections_set, collections_name):
  """Adds variable (or all its parts) to all collections with that name."""
  collections = utils.get_variable_collections(collections_set,
                                               collections_name) or []
  variables_list = [variable]
  if isinstance(variable, tf_variables.PartitionedVariable):
    variables_list = [v for v in variable]
  for collection in collections:
    for var in variables_list:
      if var not in ops.get_collection(collection):
        ops.add_to_collection(collection, var) 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:13,代碼來源:layers.py

示例3: _rnn_get_variable

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _rnn_get_variable(self, getter, *args, **kwargs):
    variable = getter(*args, **kwargs)
    trainable = (variable in tf_variables.trainable_variables() or
                 (isinstance(variable, tf_variables.PartitionedVariable) and
                  list(variable)[0] in tf_variables.trainable_variables()))
    if trainable and variable not in self._trainable_weights:
      self._trainable_weights.append(variable)
    elif not trainable and variable not in self._non_trainable_weights:
      self._non_trainable_weights.append(variable)
    return variable 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:rnn_cell_impl.py

示例4: _get_dense_tensor

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
    # Get sparse IDs and weights.
    sparse_tensors = self.categorical_column._get_sparse_tensors(  # pylint: disable=protected-access
        inputs, weight_collections=weight_collections, trainable=trainable)
    sparse_ids = sparse_tensors.id_tensor
    sparse_weights = sparse_tensors.weight_tensor

    # Create embedding weight, and restore from checkpoint if necessary.
    embedding_weights = variable_scope.get_variable(
        name='embedding_weights',
        shape=(self.categorical_column._num_buckets, self.dimension),  # pylint: disable=protected-access
        dtype=dtypes.float32,
        initializer=self.initializer,
        trainable=self.trainable and trainable,
        collections=weight_collections)
    if self.ckpt_to_load_from is not None:
      to_restore = embedding_weights
      if isinstance(to_restore, variables.PartitionedVariable):
        to_restore = to_restore._get_variable_list()  # pylint: disable=protected-access
      checkpoint_utils.init_from_checkpoint(self.ckpt_to_load_from, {
          self.tensor_name_in_ckpt: to_restore
      })

    # Return embedding lookup result.
    return _safe_embedding_lookup_sparse(
        embedding_weights=embedding_weights,
        sparse_ids=sparse_ids,
        sparse_weights=sparse_weights,
        combiner=self.combiner,
        name='%s_weights' % self.name,
        max_norm=self.max_norm) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:feature_column.py

示例5: _add_variable_to_collections

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _add_variable_to_collections(variable, collections_set, collections_name):
  """Adds variable (or all its parts) to all collections with that name."""
  collections = utils.get_variable_collections(
      collections_set, collections_name) or []
  variables_list = [variable]
  if isinstance(variable, tf_variables.PartitionedVariable):
    variables_list = [v for v in variable]
  for collection in collections:
    for var in variables_list:
      if var not in ops.get_collection(collection):
        ops.add_to_collection(collection, var) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:layers.py

示例6: embedding_lookup_unique

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def embedding_lookup_unique(params, ids, name=None):
  """Version of embedding_lookup that avoids duplicate lookups.

  This can save communication in the case of repeated ids.
  Same interface as embedding_lookup. Except it supports multi-dimensional `ids`
  which allows to not reshape input/output to fit gather.

  Args:
    params: A list of tensors with the same shape and type, or a
      `PartitionedVariable`. Shape `[index, d1, d2, ...]`.
    ids: A one-dimensional `Tensor` with type `int32` or `int64` containing
      the ids to be looked up in `params`. Shape `[ids1, ids2, ...]`.
    name: A name for this operation (optional).

  Returns:
    A `Tensor` with the same type as the tensors in `params` and dimension of
    `[ids1, ids2, d1, d2, ...]`.

  Raises:
    ValueError: If `params` is empty.
  """
  with ops.name_scope(name, "EmbeddingLookupUnique", [params, ids]):
    ids = ops.convert_to_tensor(ids)
    shape = array_ops.shape(ids)
    ids_flat = array_ops.reshape(
        ids, math_ops.reduce_prod(shape, keep_dims=True))
    unique_ids, idx = array_ops.unique(ids_flat)
    unique_embeddings = embedding_ops.embedding_lookup(params, unique_ids)
    embeds_flat = array_ops.gather(unique_embeddings, idx)
    embed_shape = array_ops.concat(
        [shape, array_ops.shape(unique_embeddings)[1:]], 0)
    embeds = array_ops.reshape(embeds_flat, embed_shape)
    embeds.set_shape(ids.get_shape().concatenate(
        unique_embeddings.get_shape()[1:]))
    return embeds 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:37,代碼來源:embedding_ops.py

示例7: embedding_lookup_unique

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def embedding_lookup_unique(params, ids, name=None):
  """Version of embedding_lookup that avoids duplicate lookups.

  This can save communication in the case of repeated ids.
  Same interface as embedding_lookup. Except it supports multi-dimensional `ids`
  which allows to not reshape input/output to fit gather.

  Args:
    params: A list of tensors with the same shape and type, or a
      `PartitionedVariable`. Shape `[index, d1, d2, ...]`.
    ids: A one-dimensional `Tensor` with type `int32` or `int64` containing
      the ids to be looked up in `params`. Shape `[ids1, ids2, ...]`.
    name: A name for this operation (optional).

  Returns:
    A `Tensor` with the same type as the tensors in `params` and dimension of
    `[ids1, ids2, d1, d2, ...]`.

  Raises:
    ValueError: If `params` is empty.
  """
  with ops.name_scope(name, "EmbeddingLookupUnique", [params, ids]):
    ids = ops.convert_to_tensor(ids)
    shape = array_ops.shape(ids)
    ids_flat = array_ops.reshape(
        ids, math_ops.reduce_prod(shape, keep_dims=True))
    unique_ids, idx = array_ops.unique(ids_flat)
    unique_embeddings = embedding_ops.embedding_lookup(params, unique_ids)
    embeds_flat = array_ops.gather(unique_embeddings, idx)
    embed_shape = array_ops.concat(
        0, [shape, array_ops.shape(unique_embeddings)[1:]])
    embeds = array_ops.reshape(embeds_flat, embed_shape)
    embeds.set_shape(ids.get_shape().concatenate(
        unique_embeddings.get_shape()[1:]))
    return embeds 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:37,代碼來源:embedding_ops.py

示例8: _add_variable_to_collections

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _add_variable_to_collections(variable, collections_set, collections_name):
    """Adds variable (or all its parts) to all collections with that name."""
    collections = utils.get_variable_collections(
            collections_set, collections_name) or []
    variables_list = [variable]
    if isinstance(variable, tf_variables.PartitionedVariable):
        variables_list = [v for v in variable]
    for collection in collections:
        for var in variables_list:
            if var not in ops.get_collection(collection):
                ops.add_to_collection(collection, var) 
開發者ID:balancap,項目名稱:tf-imagenet,代碼行數:13,代碼來源:convolution.py

示例9: _add_variable_to_collections

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _add_variable_to_collections(variable, collections_set, collections_name):
    """Adds variable (or all its parts) to all collections with that name."""
    collections = utils.get_variable_collections(collections_set,
                                                 collections_name) or []
    variables_list = [variable]
    if isinstance(variable, tf_variables.PartitionedVariable):
        variables_list = [v for v in variable]
    for collection in collections:
        for var in variables_list:
            if var not in ops.get_collection(collection):
                ops.add_to_collection(collection, var) 
開發者ID:hyperconnect,項目名稱:MMNet,代碼行數:13,代碼來源:mmnet_utils.py

示例10: _rnn_get_variable

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _rnn_get_variable(self, getter, *args, **kwargs):
        variable = getter(*args, **kwargs)
        trainable = (variable in tf_variables.trainable_variables() or
                                 (isinstance(variable, tf_variables.PartitionedVariable) and
                                    list(variable)[0] in tf_variables.trainable_variables()))
        if trainable and variable not in self._trainable_weights:
            self._trainable_weights.append(variable)
        elif not trainable and variable not in self._non_trainable_weights:
            self._non_trainable_weights.append(variable)
        return variable 
開發者ID:Trinkle23897,項目名稱:Artificial-Neural-Network-THU-2018,代碼行數:12,代碼來源:rnn_cell.py

示例11: begin

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def begin(self):
    with tf.compat.v1.variable_scope(
        tf.compat.v1.get_variable_scope()) as scope:
      scope.reuse_variables()
      partitioned_weight = tf.compat.v1.get_variable(
          self._var_name, shape=(self._var_dim, 1))
      self._test_case.assertTrue(
          isinstance(partitioned_weight, variables_lib.PartitionedVariable))
      for part in partitioned_weight:
        self._test_case.assertEqual(self._var_dim // self._partitions,
                                    part.get_shape()[0]) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:13,代碼來源:linear_testing_utils_v1.py

示例12: _create_slots

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _create_slots(self):
    """Make unshrunk internal variables (slots)."""
    # Unshrunk variables have the updates before applying L1 regularization.
    # Each unshrunk slot variable is either a `Variable` or list of
    # `Variable`, depending on the value of its corresponding primary variable.
    # We avoid using `PartitionedVariable` for the unshrunk slots since we do
    # not need any of the extra information.
    self._slots = collections.defaultdict(list)
    for name in ['sparse_features_weights', 'dense_features_weights']:
      for var in self._variables[name]:
        # Our primary variable may be either a PartitionedVariable, or a list
        # of Variables (each representing a partition).
        if (isinstance(var, var_ops.PartitionedVariable) or
            isinstance(var, list)):
          var_list = []
          for v in var:
            with ops.colocate_with(v):
              slot_var = tf.Variable(
                  initial_value=tf.compat.v1.zeros_like(v.initialized_value(),
                                                        tf.dtypes.float32),
                  name=v.op.name + '_unshrunk')
              var_list.append(slot_var)
          self._slots['unshrunk_' + name].append(var_list)
        else:
          with tf.compat.v1.device(var.device):
            self._slots['unshrunk_' + name].append(
                tf.Variable(
                    tf.compat.v1.zeros_like(var.initialized_value(),
                                            tf.dtypes.float32),
                    name=var.op.name + '_unshrunk')) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:32,代碼來源:sdca_ops.py

示例13: _var_to_list

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _var_to_list(self, var):
    """Wraps var in a list if it is not a list or PartitionedVariable."""
    if not isinstance(var, (list, var_ops.PartitionedVariable)):
      var = [var]
    return var 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:7,代碼來源:sdca_ops.py

示例14: _convert_n_to_tensor

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _convert_n_to_tensor(self, input_list, as_ref=False):
    """Converts input list to a set of tensors."""
    # input_list can be a list of Variables (that are implicitly partitioned),
    # in which case the underlying logic in internal_convert_to_tensor will not
    # concatenate the partitions together.  This method takes care of the
    # concatenating (we only allow partitioning on the first axis).
    output_list = []
    for x in input_list:
      tensor_to_convert = x
      if isinstance(x, list) or isinstance(x, var_ops.PartitionedVariable):
        # We only allow for partitioning on the first axis.
        tensor_to_convert = tf.concat(x, axis=0)
      output_list.append(
          internal_convert_to_tensor(tensor_to_convert, as_ref=as_ref))
    return output_list 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:17,代碼來源:sdca_ops.py

示例15: _rnn_get_variable

# 需要導入模塊: from tensorflow.python.ops import variables [as 別名]
# 或者: from tensorflow.python.ops.variables import PartitionedVariable [as 別名]
def _rnn_get_variable(self, getter, *args, **kwargs):
    variable = getter(*args, **kwargs)
    if context.in_graph_mode():
      trainable = (variable in tf_variables.trainable_variables() or
                   (isinstance(variable, tf_variables.PartitionedVariable) and
                    list(variable)[0] in tf_variables.trainable_variables()))
    else:
      trainable = variable._trainable  # pylint: disable=protected-access
    if trainable and variable not in self._trainable_weights:
      self._trainable_weights.append(variable)
    elif not trainable and variable not in self._non_trainable_weights:
      self._non_trainable_weights.append(variable)
    return variable 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:15,代碼來源:rnn_cell_impl.py


注:本文中的tensorflow.python.ops.variables.PartitionedVariable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。