本文整理匯總了Python中tensorflow.python.ops.variable_scope.variable_scope方法的典型用法代碼示例。如果您正苦於以下問題:Python variable_scope.variable_scope方法的具體用法?Python variable_scope.variable_scope怎麽用?Python variable_scope.variable_scope使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.variable_scope
的用法示例。
在下文中一共展示了variable_scope.variable_scope方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scheduled_sampling
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def scheduled_sampling(self, batch_size, sampling_probability, true, estimate):
with variable_scope.variable_scope("ScheduledEmbedding"):
# Return -1s where we do not sample, and sample_ids elsewhere
select_sampler = bernoulli.Bernoulli(probs=sampling_probability, dtype=tf.bool)
select_sample = select_sampler.sample(sample_shape=batch_size)
sample_ids = array_ops.where(
select_sample,
tf.range(batch_size),
gen_array_ops.fill([batch_size], -1))
where_sampling = math_ops.cast(
array_ops.where(sample_ids > -1), tf.int32)
where_not_sampling = math_ops.cast(
array_ops.where(sample_ids <= -1), tf.int32)
_estimate = array_ops.gather_nd(estimate, where_sampling)
_true = array_ops.gather_nd(true, where_not_sampling)
base_shape = array_ops.shape(true)
result1 = array_ops.scatter_nd(indices=where_sampling, updates=_estimate, shape=base_shape)
result2 = array_ops.scatter_nd(indices=where_not_sampling, updates=_true, shape=base_shape)
result = result1 + result2
return result1 + result2
示例2: add_embedding_layer
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def add_embedding_layer(self, emb_matrix):
"""
Adds word embedding layer to the graph.
Inputs:
emb_matrix: shape (400002, embedding_size).
The GloVe vectors, plus vectors for PAD and UNK.
"""
with vs.variable_scope("embeddings"):
# Note: the embedding matrix is a tf.constant which means it's not a trainable parameter
embedding_matrix = tf.constant(emb_matrix, dtype=tf.float32, name="emb_matrix") # shape (400002, embedding_size)
# Get the word embeddings for the context and question,
# using the placeholders self.context_ids and self.qn_ids
self.context_embs = embedding_ops.embedding_lookup(embedding_matrix, self.context_ids) # shape (batch_size, context_len, embedding_size)
self.qn_embs = embedding_ops.embedding_lookup(embedding_matrix, self.qn_ids) # shape (batch_size, question_len, embedding_size)
示例3: dense_to_sparse
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
"""Converts a dense tensor into a sparse tensor.
An example use would be to convert dense labels to sparse ones
so that they can be fed to the ctc_loss.
Args:
tensor: An `int` `Tensor` to be converted to a `Sparse`.
eos_token: An integer. It is part of the target label that signifies the
end of a sentence.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
"""
with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
tensor = ops.convert_to_tensor(tensor)
indices = array_ops.where(
math_ops.not_equal(tensor, constant_op.constant(eos_token,
tensor.dtype)))
values = array_ops.gather_nd(tensor, indices)
shape = array_ops.shape(tensor, out_type=dtypes.int64)
outputs = sparse_tensor.SparseTensor(indices, values, shape)
return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
示例4: softmax
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def softmax(logits, scope=None):
"""Performs softmax on Nth dimension of N-dimensional logit tensor.
For two-dimensional logits this reduces to tf.nn.softmax. The N-th dimension
needs to have a specified number of elements (number of classes).
Args:
logits: N-dimensional `Tensor` with logits, where N > 1.
scope: Optional scope for variable_scope.
Returns:
A `Tensor` with same shape and type as logits.
"""
# TODO(jrru): Add axis argument which defaults to last dimension.
with variable_scope.variable_scope(scope, 'softmax', [logits]):
num_logits = utils.last_dimension(logits.get_shape(), min_rank=2)
logits_2d = array_ops.reshape(logits, [-1, num_logits])
predictions = nn.softmax(logits_2d)
predictions = array_ops.reshape(predictions, array_ops.shape(logits))
if not context.executing_eagerly():
predictions.set_shape(logits.get_shape())
return predictions
示例5: call
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def call(self, inputs, forward=True):
vs = variable_scope.get_variable_scope()
vars_before = vs.global_variables()
if forward:
x1, x2 = inputs
out = self._forward(x1, x2)
else:
y1, y2 = inputs
out = self._backward(y1, y2)
# Add any created variables to the Layer's variable stores
new_vars = vs.global_variables()[len(vars_before):]
train_vars = vs.trainable_variables()
for new_var in new_vars:
if new_var in train_vars:
self._trainable_weights.append(new_var)
else:
self._non_trainable_weights.append(new_var)
return out
示例6: call
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def call(self, inputs, state):
"""Gated recurrent unit (GRU) with nunits cells."""
with vs.variable_scope("gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
bias_ones = self._bias_initializer
if self._bias_initializer is None:
dtype = [a.dtype for a in [inputs, state]][0]
bias_ones = init_ops.constant_initializer(1.0, dtype=dtype)
value = math_ops.sigmoid(
_linear([inputs, state], 2 * self._num_units, True, bias_ones,
self._kernel_initializer))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
with vs.variable_scope("candidate"):
c = self._activation(
_linear([inputs, r * state], self._num_units, True,
self._bias_initializer, self._kernel_initializer))
new_h = u * state + (1 - u) * c
return new_h, new_h
示例7: fixed_size_partitioner
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def fixed_size_partitioner(num_shards, axis=0):
"""Partitioner to specify a fixed number of shards along given axis.
Args:
num_shards: `int`, number of shards to partition variable.
axis: `int`, axis to partition on.
Returns:
A partition function usable as the `partitioner` argument to
`variable_scope`, `get_variable`, and `get_partitioned_variable_list`.
"""
def _partitioner(shape, **unused_args):
partitions_list = [1] * len(shape)
partitions_list[axis] = min(num_shards, shape[axis].value)
return partitions_list
return _partitioner
示例8: _create_local
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def _create_local(name, shape, collections=None, validate_shape=True,
dtype=dtypes.float32):
"""Creates a new local variable.
Args:
name: The name of the new or existing variable.
shape: Shape of the new or existing variable.
collections: A list of collection names to which the Variable will be added.
validate_shape: Whether to validate the shape of the variable.
dtype: Data type of the variables.
Returns:
The created variable.
"""
# Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
collections = list(collections or [])
collections += [ops.GraphKeys.LOCAL_VARIABLES]
return variable_scope.variable(
array_ops.zeros(shape, dtype=dtype),
name=name,
trainable=False,
collections=collections,
validate_shape=validate_shape)
示例9: _create_dense_column_weighted_sum
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def _create_dense_column_weighted_sum(
column, builder, units, weight_collections, trainable):
"""Create a weighted sum of a dense column for linear_model."""
tensor = column._get_dense_tensor( # pylint: disable=protected-access
builder,
weight_collections=weight_collections,
trainable=trainable)
num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access
batch_size = array_ops.shape(tensor)[0]
tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements))
weight = variable_scope.get_variable(
name='weights',
shape=[num_elements, units],
initializer=init_ops.zeros_initializer(),
trainable=trainable,
collections=weight_collections)
return math_ops.matmul(tensor, weight, name='weighted_sum')
示例10: _attention
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def _attention(self, query, attn_states):
conv2d = nn_ops.conv2d
reduce_sum = math_ops.reduce_sum
softmax = nn_ops.softmax
tanh = math_ops.tanh
with vs.variable_scope("attention"):
k = vs.get_variable(
"attn_w", [1, 1, self._attn_size, self._attn_vec_size])
v = vs.get_variable("attn_v", [self._attn_vec_size])
hidden = array_ops.reshape(attn_states,
[-1, self._attn_length, 1, self._attn_size])
hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
y = _linear(query, self._attn_vec_size, True)
y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
a = softmax(s)
d = reduce_sum(
array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
new_attns = array_ops.reshape(d, [-1, self._attn_size])
new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
return new_attns, new_attn_states
示例11: subsample
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def subsample(inputs, factor, scope=None):
"""Subsamples the input along the spatial dimensions.
Args:
inputs: A `Tensor` of size [batch, height_in, width_in, channels].
factor: The subsampling factor.
scope: Optional variable_scope.
Returns:
output: A `Tensor` of size [batch, height_out, width_out, channels] with the
input, either intact (if factor == 1) or subsampled (if factor > 1).
"""
if factor == 1:
return inputs
else:
return layers.max_pool2d(inputs, [1, 1], stride=factor, scope=scope)
示例12: prepare_attention
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def prepare_attention(attention_states,
attention_option,
num_units,
reuse=False):
"""Prepare keys/values/functions for attention.
Args:
attention_states: hidden states to attend over.
attention_option: how to compute attention, either "luong" or "bahdanau".
num_units: hidden state dimension.
reuse: whether to reuse variable scope.
Returns:
attention_keys: to be compared with target states.
attention_values: to be used to construct context vectors.
attention_score_fn: to compute similarity between key and target states.
attention_construct_fn: to build attention states.
"""
# Prepare attention keys / values from attention_states
with variable_scope.variable_scope("attention_keys", reuse=reuse) as scope:
attention_keys = layers.linear(
attention_states, num_units, biases_initializer=None, scope=scope)
attention_values = attention_states
# Attention score function
attention_score_fn = _create_attention_score_fn("attention_score", num_units,
attention_option, reuse)
# Attention construction function
attention_construct_fn = _create_attention_construct_fn("attention_construct",
num_units,
attention_score_fn,
reuse)
return (attention_keys, attention_values, attention_score_fn,
attention_construct_fn)
示例13: _create_attention_construct_fn
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def _create_attention_construct_fn(name, num_units, attention_score_fn, reuse):
"""Function to compute attention vectors.
Args:
name: to label variables.
num_units: hidden state dimension.
attention_score_fn: to compute similarity between key and target states.
reuse: whether to reuse variable scope.
Returns:
attention_construct_fn: to build attention states.
"""
with variable_scope.variable_scope(name, reuse=reuse) as scope:
def construct_fn(attention_query, attention_keys, attention_values):
context = attention_score_fn(attention_query, attention_keys,
attention_values)
concat_input = array_ops.concat([attention_query, context], 1)
attention = layers.linear(
concat_input, num_units, biases_initializer=None, scope=scope)
return attention
return construct_fn
# keys: [batch_size, attention_length, attn_size]
# query: [batch_size, 1, attn_size]
# return weights [batch_size, attention_length]
示例14: build_graph
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def build_graph(self, inputs, masks):
"""
Inputs:
inputs: Tensor shape (batch_size, seq_len, input_size)
masks: Tensor shape (batch_size, seq_len).
Has 1s where there is real input, 0s where there's padding.
This is used to make sure tf.nn.bidirectional_dynamic_rnn doesn't iterate through masked steps.
Returns:
out: Tensor shape (batch_size, seq_len, hidden_size*2).
This is all hidden states (fw and bw hidden states are concatenated).
"""
with vs.variable_scope("RNNEncoder"):
input_lens = tf.reduce_sum(masks, reduction_indices=1) # shape (batch_size)
# Note: fw_out and bw_out are the hidden states for every timestep.
# Each is shape (batch_size, seq_len, hidden_size).
(fw_out, bw_out), _ = tf.nn.bidirectional_dynamic_rnn(self.rnn_cell_fw, self.rnn_cell_bw, inputs, input_lens, dtype=tf.float32)
# Concatenate the forward and backward hidden states
out = tf.concat([fw_out, bw_out], 2)
# Apply dropout
out = tf.nn.dropout(out, self.keep_prob)
return out
示例15: __init__
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import variable_scope [as 別名]
def __init__(self, FLAGS, id2word, word2id, emb_matrix):
"""
Initializes the QA model.
Inputs:
FLAGS: the flags passed in from main.py
id2word: dictionary mapping word idx (int) to word (string)
word2id: dictionary mapping word (string) to word idx (int)
emb_matrix: numpy array shape (400002, embedding_size) containing pre-traing GloVe embeddings
"""
print "Initializing the QAModel..."
self.FLAGS = FLAGS
self.id2word = id2word
self.word2id = word2id
# Add all parts of the graph
with tf.variable_scope("QAModel", initializer=tf.contrib.layers.variance_scaling_initializer(factor=1.0, uniform=True)):
self.add_placeholders()
self.add_embedding_layer(emb_matrix)
self.build_graph()
self.add_loss()
# Define trainable parameters, gradient, gradient norm, and clip by gradient norm
params = tf.trainable_variables()
gradients = tf.gradients(self.loss, params)
self.gradient_norm = tf.global_norm(gradients)
clipped_gradients, _ = tf.clip_by_global_norm(gradients, FLAGS.max_gradient_norm)
self.param_norm = tf.global_norm(params)
# Define optimizer and updates
# (updates is what you need to fetch in session.run to do a gradient update)
self.global_step = tf.Variable(0, name="global_step", trainable=False)
opt = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) # you can try other optimizers
self.updates = opt.apply_gradients(zip(clipped_gradients, params), global_step=self.global_step)
# Define savers (for checkpointing) and summaries (for tensorboard)
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.keep)
self.bestmodel_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
self.summaries = tf.summary.merge_all()