本文整理匯總了Python中tensorflow.python.ops.variable_scope._get_default_variable_store方法的典型用法代碼示例。如果您正苦於以下問題:Python variable_scope._get_default_variable_store方法的具體用法?Python variable_scope._get_default_variable_store怎麽用?Python variable_scope._get_default_variable_store使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.variable_scope
的用法示例。
在下文中一共展示了variable_scope._get_default_variable_store方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_from_pytorch_checkpoint
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def load_from_pytorch_checkpoint(checkpoint, assignment_map):
pytorch_model = torch.load(checkpoint, map_location='cpu')
pt_model_with_tf_keys = my_convert_keys(pytorch_model)
for _, name in assignment_map.items():
store_vars = vs._get_default_variable_store()._vars
var = store_vars.get(name, None)
assert var is not None
if name not in pt_model_with_tf_keys:
print('WARNING:', name, 'not found in original model.')
continue
array = pt_model_with_tf_keys[name].cpu().numpy()
if any([x in name for x in tensors_to_transpose]):
array = array.transpose()
assert tuple(var.get_shape().as_list()) == tuple(array.shape)
init_value = ops.convert_to_tensor(array, dtype=np.float32)
var._initial_value = init_value
var._initializer_op = var.assign(init_value)
示例2: getvar
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def getvar(
self,
getter,
name,
shape=None,
dtype=None,
initializer=None,
reuse=None,
trainable=True,
collections=None, # pylint: disable=redefined-outer-name
use_resource=None,
**kwargs):
"""A custom variable getter."""
# Here, we switch the default graph to the outer graph and ask the
# variable scope in which the function is defined to give us the
# variable. The variable is stashed in extra_vars and returned to
# the caller.
#
# We capture these variables so that the variable definition is
# hoisted upward to the outer most graph.
with self._outer_graph.as_default():
# pylint: disable=protected-access
var = self._vscope.get_variable(
vs._get_default_variable_store(),
name,
shape=shape,
dtype=dtype,
initializer=initializer,
reuse=reuse,
trainable=trainable,
collections=collections,
use_resource=use_resource)
self.extra_vars.append(var)
if isinstance(var, resource_variable_ops.ResourceVariable):
# For resource-based variables read the variable outside the function
# and pass in the value. This ensures that the function is pure and
# differentiable. TODO(apassos) this may have performance problems if
# the function will only do embedding lookups on the variable.
return var.value()
return var
示例3: getvar
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def getvar(self,
getter,
name,
shape=None,
dtype=None,
initializer=None,
trainable=True,
collections=None,
**kwargs):
"""A custom variable getter."""
# Here, we switch the default graph to the outer graph and ask the
# variable scope in which the function is defined to give us the
# variable. The variable is stashed in extra_vars and returned to
# the caller.
#
# We capture these variables so that the variable definition is
# hoisted upward to the outer most graph.
with self._outer_graph.as_default():
# pylint: disable=protected-access
var = self._vscope.get_variable(
vs._get_default_variable_store(),
name,
shape=shape,
dtype=dtype,
initializer=initializer,
trainable=trainable,
collections=collections)
self.extra_vars.append(var)
return var
示例4: testGetVar
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def testGetVar(self):
vs = variable_scope._get_default_variable_store()
v = vs.get_variable("v", [1])
v1 = vs.get_variable("v", [1])
assert v == v1
示例5: testNameExists
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def testNameExists(self):
vs = variable_scope._get_default_variable_store()
# No check by default, so we can both create and get existing names.
v = vs.get_variable("v", [1])
v1 = vs.get_variable("v", [1])
assert v == v1
# When reuse is False, we fail when variables are already there.
vs.get_variable("w", [1], reuse=False) # That's ok.
with self.assertRaises(ValueError):
vs.get_variable("v", [1], reuse=False) # That fails.
# When reuse is True, we fail when variables are new.
vs.get_variable("v", [1], reuse=True) # That's ok.
with self.assertRaises(ValueError):
vs.get_variable("u", [1], reuse=True) # That fails.
示例6: testNamelessStore
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def testNamelessStore(self):
vs = variable_scope._get_default_variable_store()
vs.get_variable("v1", [2])
vs.get_variable("v2", [2])
expected_names = ["%s:0" % name for name in ["v1", "v2"]]
self.assertEqual(set(expected_names),
set([v.name for v in vs._vars.values()]))
示例7: getvar
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def getvar(self,
name,
shape=None,
dtype=None,
initializer=None,
trainable=True,
collections=None,
**kwargs):
"""A custom variable getter."""
# Here, we switch the default graph to the outer graph and ask the
# variable scope in which the function is defined to give us the
# variable. The variable is stashed in extra_vars and returned to
# the caller.
#
# We capture these variables so that the variable definition is
# hoisted upward to the outer most graph.
with self._outer_graph.as_default():
# pylint: disable=protected-access
var = self._vscope.get_variable(
vs._get_default_variable_store(),
name,
shape=shape,
dtype=dtype,
initializer=initializer,
trainable=trainable,
collections=collections)
self.extra_vars.append(var)
return var
示例8: _default_initializer
# 需要導入模塊: from tensorflow.python.ops import variable_scope [as 別名]
# 或者: from tensorflow.python.ops.variable_scope import _get_default_variable_store [as 別名]
def _default_initializer(name, shape, dtype):
"""The default initializer for variables."""
# pylint: disable=protected-access
store = variable_scope._get_default_variable_store()
initializer = store._get_default_initializer(name, shape=shape, dtype=dtype)
# pylint: enable=protected-access
return initializer[0]
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:9,代碼來源:graph_callable.py