本文整理匯總了Python中tensorflow.python.ops.string_ops.substr方法的典型用法代碼示例。如果您正苦於以下問題:Python string_ops.substr方法的具體用法?Python string_ops.substr怎麽用?Python string_ops.substr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.string_ops
的用法示例。
在下文中一共展示了string_ops.substr方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: getTokenWord
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import substr [as 別名]
def getTokenWord(self, text, token_starts, token_ends):
def _FindSubstr(input_tensor):
text, token_start, token_length = input_tensor
return string_ops.substr(text, token_start, token_length)
token_lengths = token_ends - token_starts
token_word = ragged_map_ops.map_fn(
_FindSubstr, (text, token_starts, token_lengths),
dtype=ragged_tensor.RaggedTensorType(
dtype=dtypes.string, ragged_rank=1),
infer_shape=False)
return token_word
示例2: decode_image
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import substr [as 別名]
def decode_image(contents, channels=None, name=None):
"""Convenience function for `decode_gif`, `decode_jpeg`, and `decode_png`.
Detects whether an image is a GIF, JPEG, or PNG, and performs the appropriate
operation to convert the input bytes `string` into a `Tensor` of type `uint8`.
Note: `decode_gif` returns a 4-D array `[num_frames, height, width, 3]`, as
opposed to `decode_jpeg` and `decode_png`, which return 3-D arrays
`[height, width, num_channels]`. Make sure to take this into account when
constructing your graph if you are intermixing GIF files with JPEG and/or PNG
files.
Args:
contents: 0-D `string`. The encoded image bytes.
channels: An optional `int`. Defaults to `0`. Number of color channels for
the decoded image.
name: A name for the operation (optional)
Returns:
`Tensor` with type `uint8` with shape `[height, width, num_channels]` for
JPEG and PNG images and shape `[num_frames, height, width, 3]` for GIF
images.
"""
with ops.name_scope(name, 'decode_image') as scope:
if channels not in (None, 0, 1, 3):
raise ValueError('channels must be in (None, 0, 1, 3)')
substr = string_ops.substr(contents, 0, 4)
def _gif():
# Create assert op to check that bytes are GIF decodable
is_gif = math_ops.equal(substr, b'\x47\x49\x46\x38', name='is_gif')
decode_msg = 'Unable to decode bytes as JPEG, PNG, or GIF'
assert_decode = control_flow_ops.Assert(is_gif, [decode_msg])
# Create assert to make sure that channels is not set to 1
# Already checked above that channels is in (None, 0, 1, 3)
gif_channels = 0 if channels is None else channels
good_channels = math_ops.not_equal(gif_channels, 1, name='check_channels')
channels_msg = 'Channels must be in (None, 0, 3) when decoding GIF images'
assert_channels = control_flow_ops.Assert(good_channels, [channels_msg])
with ops.control_dependencies([assert_decode, assert_channels]):
return gen_image_ops.decode_gif(contents)
def _png():
return gen_image_ops.decode_png(contents, channels)
def check_png():
is_png = math_ops.equal(substr, b'\211PNG', name='is_png')
return control_flow_ops.cond(is_png, _png, _gif, name='cond_png')
def _jpeg():
return gen_image_ops.decode_jpeg(contents, channels)
is_jpeg = math_ops.equal(substr, b'\xff\xd8\xff\xe0', name='is_jpeg')
return control_flow_ops.cond(is_jpeg, _jpeg, check_png, name='cond_jpeg')
示例3: break_sentences_with_offsets
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import substr [as 別名]
def break_sentences_with_offsets(self, doc):
"""Splits `doc` into sentence fragments, returns text, start & end offsets.
Example:
1 1 2 3
012345678901234 01234567890123456789012345678901234567
doc: 'Hello...foo bar', 'Welcome to the U.S. don't be surprised'
fragment_text: [['Hello...', 'foo bar'], ['Welcome to the U.S.' , 'don't
be surprised']]
start: [[0, 8],[0, 20]]
end: [[8, 15],[19, 38]]
Args:
doc: A string `Tensor` of shape [batch] with a batch of documents.
Returns:
A tuple of (fragment_text, start, end) where:
fragment_text: A string `RaggedTensor` of shape [batch, (num_sentences)]
with each input broken up into its constituent sentence fragments.
start: A int64 `RaggedTensor` of shape [batch, (num_sentences)]
where each entry is the inclusive beginning byte offset of a sentence.
end: A int64 `RaggedTensor` of shape [batch, (num_sentences)]
where each entry is the exclusive ending byte offset of a sentence.
"""
if not isinstance(doc, ragged_tensor.RaggedTensor):
doc = ragged_tensor.RaggedTensor.from_tensor(doc)
# Run sentence fragmenter op v2
fragment = gen_state_based_sentence_breaker_op.sentence_fragments_v2(
doc=doc.flat_values)
start, end, properties, terminal_punc_token, row_lengths = fragment
# Pack and create `RaggedTensor`s
start, end, properties, terminal_punc_token = tuple(
ragged_tensor.RaggedTensor.from_row_lengths(value, row_lengths)
for value in [start, end, properties, terminal_punc_token])
# Helper for use within map_fn (function must only take in one argument)
def _substring(x):
s, pos, length = x
return string_ops.substr(s, pos, length)
# Extract fragment text using offsets
fragment_text = ragged_map_ops.map_fn(
_substring, (doc, start, math_ops.subtract(end, start)),
infer_shape=False,
dtype=dtypes.string)
return fragment_text, start, end