本文整理匯總了Python中tensorflow.python.ops.string_ops.string_join方法的典型用法代碼示例。如果您正苦於以下問題:Python string_ops.string_join方法的具體用法?Python string_ops.string_join怎麽用?Python string_ops.string_join使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.string_ops
的用法示例。
在下文中一共展示了string_ops.string_join方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _check_multiple_of
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import string_join [as 別名]
def _check_multiple_of(value, multiple_of):
"""Checks that value `value` is a non-zero multiple of `multiple_of`.
Args:
value: an int32 scalar Tensor.
multiple_of: an int or int32 scalar Tensor.
Returns:
new_value: an int32 scalar Tensor matching `value`, but which includes an
assertion that `value` is a multiple of `multiple_of`.
"""
assert isinstance(value, ops.Tensor)
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.logical_and(
math_ops.equal(math_ops.mod(value, multiple_of), 0),
math_ops.not_equal(value, 0)), [
string_ops.string_join([
"Tensor %s should be a multiple of: " % value.name,
string_ops.as_string(multiple_of), ", but saw value: ",
string_ops.as_string(value),
". Consider setting pad=True."
])
])
]):
new_value = array_ops.identity(value, name="multiple_of_checked")
return new_value
示例2: _check_rank
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import string_join [as 別名]
def _check_rank(value, expected_rank):
"""Check the rank of Tensor `value`, via shape inference and assertions.
Args:
value: A Tensor, possibly with shape associated shape information.
expected_rank: int32 scalar (optionally a `Tensor`).
Returns:
new_value: A Tensor matching `value`. Accessing this tensor tests
assertions on its rank. If expected_rank is not a `Tensor`, then
new_value's shape's rank has been set.
Raises:
ValueError: if `expected_rank` is not a `Tensor` and the rank of `value`
is known and is not equal to `expected_rank`.
"""
assert isinstance(value, ops.Tensor)
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.equal(expected_rank, array_ops.rank(value)), [
string_ops.string_join([
"Rank of tensor %s should be: " % value.name,
string_ops.as_string(expected_rank), ", shape received:"
]), array_ops.shape(value)
])
]):
new_value = array_ops.identity(value, name="rank_checked")
if isinstance(expected_rank, ops.Tensor):
expected_rank_value = tensor_util.constant_value(expected_rank)
if expected_rank_value is not None:
expected_rank = int(expected_rank_value)
if not isinstance(expected_rank, ops.Tensor):
try:
new_value.set_shape(new_value.get_shape().with_rank(expected_rank))
except ValueError as e:
raise ValueError("Rank check failed for %s: %s" % (value.name, str(e)))
return new_value
示例3: _check_multiple_of
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import string_join [as 別名]
def _check_multiple_of(value, multiple_of):
"""Checks that value `value` is a non-zero multiple of `multiple_of`.
Args:
value: an int32 scalar Tensor.
multiple_of: an int or int32 scalar Tensor.
Returns:
new_value: an int32 scalar Tensor matching `value`, but which includes an
assertion that `value` is a multiple of `multiple_of`.
"""
assert isinstance(value, ops.Tensor)
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.logical_and(
math_ops.equal(math_ops.mod(value, multiple_of), 0),
math_ops.not_equal(value, 0)),
[string_ops.string_join(
["Tensor %s should be a multiple of: " % value.name,
string_ops.as_string(multiple_of),
", but saw value: ",
string_ops.as_string(value),
". Consider setting pad=True."])])]):
new_value = array_ops.identity(
value, name="multiple_of_checked")
return new_value
示例4: _check_rank
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import string_join [as 別名]
def _check_rank(value, expected_rank):
"""Check the rank of Tensor `value`, via shape inference and assertions.
Args:
value: A Tensor, possibly with shape associated shape information.
expected_rank: int32 scalar (optionally a `Tensor`).
Returns:
new_value: A Tensor matching `value`. Accessing this tensor tests
assertions on its rank. If expected_rank is not a `Tensor`, then
new_value's shape's rank has been set.
Raises:
ValueError: if `expected_rank` is not a `Tensor` and the rank of `value`
is known and is not equal to `expected_rank`.
"""
assert isinstance(value, ops.Tensor)
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.equal(expected_rank, array_ops.rank(value)),
[string_ops.string_join(
["Rank of tensor %s should be: " % value.name,
string_ops.as_string(expected_rank),
", shape received:"]),
array_ops.shape(value)])]):
new_value = array_ops.identity(value, name="rank_checked")
if isinstance(expected_rank, ops.Tensor):
expected_rank_value = tensor_util.constant_value(expected_rank)
if expected_rank_value is not None:
expected_rank = int(expected_rank_value)
if not isinstance(expected_rank, ops.Tensor):
try:
new_value.set_shape(new_value.get_shape().with_rank(expected_rank))
except ValueError as e:
raise ValueError("Rank check failed for %s: %s"
% (value.name, str(e)))
return new_value
示例5: _check_shape
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import string_join [as 別名]
def _check_shape(value, expected_shape):
"""Check the shape of Tensor `value`, via shape inference and assertions.
Args:
value: A Tensor, possibly with shape associated shape information.
expected_shape: a `TensorShape`, list of `int32`, or a vector `Tensor`.
Returns:
new_value: A Tensor matching `value`. Accessing this tensor tests
assertions on its shape. If expected_shape is not a `Tensor`, then
new_value's shape has been set.
Raises:
ValueError: if `expected_shape` is not a `Tensor` and the shape of `value`
is known and is not equal to `expected_shape`.
"""
assert isinstance(value, ops.Tensor)
if isinstance(expected_shape, tensor_shape.TensorShape):
expected_shape = expected_shape.as_list()
if isinstance(expected_shape, ops.Tensor):
expected_shape_value = tensor_util.constant_value(expected_shape)
if expected_shape_value is not None:
expected_shape = [int(d) for d in expected_shape_value]
if isinstance(expected_shape, ops.Tensor):
value = _check_rank(value, array_ops.size(expected_shape))
else:
value = _check_rank(value, len(expected_shape))
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.reduce_all(
math_ops.equal(expected_shape, array_ops.shape(value))), [
string_ops.string_join([
"Shape of tensor %s should be: " % value.name,
string_ops.as_string(expected_shape),
", shape received: ",
string_ops.as_string(array_ops.shape(value))
])
])
]):
new_value = array_ops.identity(value, name="shape_checked")
if not isinstance(expected_shape, ops.Tensor):
try:
new_value.set_shape(new_value.get_shape().merge_with(expected_shape))
except ValueError as e:
raise ValueError("Shape check failed for %s: %s" % (value.name, str(e)))
return new_value
示例6: _check_shape
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import string_join [as 別名]
def _check_shape(value, expected_shape):
"""Check the shape of Tensor `value`, via shape inference and assertions.
Args:
value: A Tensor, possibly with shape associated shape information.
expected_shape: a `TensorShape`, list of `int32`, or a vector `Tensor`.
Returns:
new_value: A Tensor matching `value`. Accessing this tensor tests
assertions on its shape. If expected_shape is not a `Tensor`, then
new_value's shape has been set.
Raises:
ValueError: if `expected_shape` is not a `Tensor` and the shape of `value`
is known and is not equal to `expected_shape`.
"""
assert isinstance(value, ops.Tensor)
if isinstance(expected_shape, tensor_shape.TensorShape):
expected_shape = expected_shape.as_list()
if isinstance(expected_shape, ops.Tensor):
expected_shape_value = tensor_util.constant_value(expected_shape)
if expected_shape_value is not None:
expected_shape = [int(d) for d in expected_shape_value]
if isinstance(expected_shape, ops.Tensor):
value = _check_rank(value, array_ops.size(expected_shape))
else:
value = _check_rank(value, len(expected_shape))
with ops.control_dependencies([
control_flow_ops.Assert(
math_ops.reduce_all(math_ops.equal(expected_shape, array_ops.shape(
value))), [string_ops.string_join([
"Shape of tensor %s should be: " % value.name,
string_ops.as_string(expected_shape), ", shape received: ",
string_ops.as_string(array_ops.shape(value))
])])
]):
new_value = array_ops.identity(value, name="shape_checked")
if not isinstance(expected_shape, ops.Tensor):
try:
new_value.set_shape(new_value.get_shape().merge_with(expected_shape))
except ValueError as e:
raise ValueError("Shape check failed for %s: %s"
% (value.name, str(e)))
return new_value
示例7: _padding
# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import string_join [as 別名]
def _padding(sequences, num_unroll):
"""For a dictionary of sequences, pads tensors to a multiple of `num_unroll`.
Args:
sequences: dictionary with `Tensor` values.
num_unroll: int specifying to what multiple to pad sequences to.
Returns:
length: Scalar `Tensor` of dimension 0 of all the values in sequences.
padded_sequence: Dictionary of sequences that are padded to a multiple of
`num_unroll`.
Raises:
ValueError: If `num_unroll` not an int or sequences not a dictionary from
string to `Tensor`.
"""
if not isinstance(num_unroll, numbers.Integral):
raise ValueError("Unsupported num_unroll expected int, got: %s" %
str(num_unroll))
if not isinstance(sequences, dict):
raise TypeError("Unsupported sequences expected dict, got: %s" %
str(sequences))
for key, value in sequences.items():
if not isinstance(key, six.string_types):
raise TypeError("Unsupported sequences key expected string, got: %s" %
str(key))
if not sequences:
return 0, {}
sequences_dict = {}
for key, value in sequences.items():
sequences_dict[key] = ops.convert_to_tensor(value)
lengths = [array_ops.shape(value)[0] for value in sequences_dict.values()]
length = lengths[0]
all_lengths_equal = [
control_flow_ops.Assert(
math_ops.equal(l, length), [string_ops.string_join(
["All sequence lengths must match, but received lengths: ",
string_ops.as_string(lengths)])])
for l in lengths]
length = control_flow_ops.with_dependencies(all_lengths_equal, length)
unroll = array_ops.constant(num_unroll)
padded_length = length + ((unroll - (length % unroll)) % unroll)
padded_sequences = {}
for key, value in sequences_dict.items():
# 1. create shape of paddings
# first dimension of value will be increased by num_paddings to
# padded_length
num_paddings = [padded_length - array_ops.shape(value)[0]]
# the shape of the paddings that we concat with the original value will be
# [num_paddings, tf.shape(value)[1], tf.shape(value)[2], ...,
# tf.shape(value)[tf.rank(value) - 1])]
padding_shape = array_ops.concat(0, (
num_paddings, array_ops.shape(value)[1:]))
# 2. fill padding shape with dummies
dummy = array_ops.constant("" if value.dtype == dtypes.string else 0,
dtype=value.dtype)
paddings = array_ops.fill(dims=padding_shape, value=dummy)
# 3. concat values with paddings
padded_sequences[key] = array_ops.concat(0, [value, paddings])
return length, padded_sequences