當前位置: 首頁>>代碼示例>>Python>>正文


Python string_ops.as_string方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.string_ops.as_string方法的典型用法代碼示例。如果您正苦於以下問題:Python string_ops.as_string方法的具體用法?Python string_ops.as_string怎麽用?Python string_ops.as_string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.string_ops的用法示例。


在下文中一共展示了string_ops.as_string方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _transform_feature

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _transform_feature(self, inputs):
    input_tensor = _to_sparse_input(inputs.get(self.key))
    if not isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
      raise ValueError('SparseColumn input must be a SparseTensor.')

    _assert_string_or_int(
        input_tensor.dtype,
        prefix='column_name: {} input_tensor'.format(self.key))

    if self.dtype.is_integer != input_tensor.dtype.is_integer:
      raise ValueError(
          'Column dtype and SparseTensors dtype must be compatible. '
          'key: {}, column dtype: {}, tensor dtype: {}'.format(
              self.key, self.dtype, input_tensor.dtype))

    if self.dtype == dtypes.string:
      sparse_values = input_tensor.values
    else:
      sparse_values = string_ops.as_string(input_tensor.values)

    sparse_id_values = string_ops.string_to_hash_bucket_fast(
        sparse_values, self.hash_bucket_size, name='lookup')
    return sparse_tensor_lib.SparseTensor(
        input_tensor.indices, sparse_id_values, input_tensor.dense_shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:feature_column.py

示例2: _do_transform

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _do_transform(self, st):
    if self.dtype.is_integer:
      sparse_string_values = string_ops.as_string(st.values)
      sparse_string_tensor = sparse_tensor_py.SparseTensor(st.indices,
                                                           sparse_string_values,
                                                           st.dense_shape)
    else:
      sparse_string_tensor = st

    table = lookup.index_table_from_file(
        vocabulary_file=self.lookup_config.vocabulary_file,
        num_oov_buckets=self.lookup_config.num_oov_buckets,
        vocab_size=self.lookup_config.vocab_size,
        default_value=self.lookup_config.default_value,
        name=self.name + "_lookup")
    return table.lookup(sparse_string_tensor) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:feature_column.py

示例3: insert_transformed_feature

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def insert_transformed_feature(self, columns_to_tensors):
    """Handles sparse column to id conversion."""
    st = self._get_input_sparse_tensor(columns_to_tensors)
    if self.dtype.is_integer:
      sparse_string_values = string_ops.as_string(st.values)
      sparse_string_tensor = sparse_tensor_py.SparseTensor(st.indices,
                                                           sparse_string_values,
                                                           st.dense_shape)
    else:
      sparse_string_tensor = st

    table = lookup.string_to_index_table_from_file(
        vocabulary_file=self.lookup_config.vocabulary_file,
        num_oov_buckets=self.lookup_config.num_oov_buckets,
        vocab_size=self.lookup_config.vocab_size,
        default_value=self.lookup_config.default_value,
        name=self.name + "_lookup")
    columns_to_tensors[self] = table.lookup(sparse_string_tensor) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:20,代碼來源:feature_column.py

示例4: _as_string

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _as_string(tensor):
  if dtypes.string == tensor.dtype.base_dtype:
    return tensor
  return string_ops.as_string(tensor) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:6,代碼來源:lookup_ops.py

示例5: _check_multiple_of

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _check_multiple_of(value, multiple_of):
  """Checks that value `value` is a non-zero multiple of `multiple_of`.

  Args:
    value: an int32 scalar Tensor.
    multiple_of: an int or int32 scalar Tensor.

  Returns:
    new_value: an int32 scalar Tensor matching `value`, but which includes an
      assertion that `value` is a multiple of `multiple_of`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.logical_and(
              math_ops.equal(math_ops.mod(value, multiple_of), 0),
              math_ops.not_equal(value, 0)), [
                  string_ops.string_join([
                      "Tensor %s should be a multiple of: " % value.name,
                      string_ops.as_string(multiple_of), ", but saw value: ",
                      string_ops.as_string(value),
                      ". Consider setting pad=True."
                  ])
              ])
  ]):
    new_value = array_ops.identity(value, name="multiple_of_checked")
    return new_value 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:sequence_queueing_state_saver.py

示例6: _check_rank

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _check_rank(value, expected_rank):
  """Check the rank of Tensor `value`, via shape inference and assertions.

  Args:
    value: A Tensor, possibly with shape associated shape information.
    expected_rank: int32 scalar (optionally a `Tensor`).

  Returns:
    new_value: A Tensor matching `value`.  Accessing this tensor tests
      assertions on its rank.  If expected_rank is not a `Tensor`, then
      new_value's shape's rank has been set.

  Raises:
    ValueError: if `expected_rank` is not a `Tensor` and the rank of `value`
      is known and is not equal to `expected_rank`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.equal(expected_rank, array_ops.rank(value)), [
              string_ops.string_join([
                  "Rank of tensor %s should be: " % value.name,
                  string_ops.as_string(expected_rank), ", shape received:"
              ]), array_ops.shape(value)
          ])
  ]):
    new_value = array_ops.identity(value, name="rank_checked")
    if isinstance(expected_rank, ops.Tensor):
      expected_rank_value = tensor_util.constant_value(expected_rank)
      if expected_rank_value is not None:
        expected_rank = int(expected_rank_value)
    if not isinstance(expected_rank, ops.Tensor):
      try:
        new_value.set_shape(new_value.get_shape().with_rank(expected_rank))
      except ValueError as e:
        raise ValueError("Rank check failed for %s: %s" % (value.name, str(e)))
    return new_value 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:39,代碼來源:sequence_queueing_state_saver.py

示例7: _check_multiple_of

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _check_multiple_of(value, multiple_of):
  """Checks that value `value` is a non-zero multiple of `multiple_of`.

  Args:
    value: an int32 scalar Tensor.
    multiple_of: an int or int32 scalar Tensor.

  Returns:
    new_value: an int32 scalar Tensor matching `value`, but which includes an
      assertion that `value` is a multiple of `multiple_of`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.logical_and(
              math_ops.equal(math_ops.mod(value, multiple_of), 0),
              math_ops.not_equal(value, 0)),
          [string_ops.string_join(
              ["Tensor %s should be a multiple of: " % value.name,
               string_ops.as_string(multiple_of),
               ", but saw value: ",
               string_ops.as_string(value),
               ". Consider setting pad=True."])])]):
    new_value = array_ops.identity(
        value, name="multiple_of_checked")
    return new_value 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:sequence_queueing_state_saver.py

示例8: _check_rank

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _check_rank(value, expected_rank):
  """Check the rank of Tensor `value`, via shape inference and assertions.

  Args:
    value: A Tensor, possibly with shape associated shape information.
    expected_rank: int32 scalar (optionally a `Tensor`).

  Returns:
    new_value: A Tensor matching `value`.  Accessing this tensor tests
      assertions on its rank.  If expected_rank is not a `Tensor`, then
      new_value's shape's rank has been set.

  Raises:
    ValueError: if `expected_rank` is not a `Tensor` and the rank of `value`
      is known and is not equal to `expected_rank`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.equal(expected_rank, array_ops.rank(value)),
          [string_ops.string_join(
              ["Rank of tensor %s should be: " % value.name,
               string_ops.as_string(expected_rank),
               ", shape received:"]),
           array_ops.shape(value)])]):
    new_value = array_ops.identity(value, name="rank_checked")
    if isinstance(expected_rank, ops.Tensor):
      expected_rank_value = tensor_util.constant_value(expected_rank)
      if expected_rank_value is not None:
        expected_rank = int(expected_rank_value)
    if not isinstance(expected_rank, ops.Tensor):
      try:
        new_value.set_shape(new_value.get_shape().with_rank(expected_rank))
      except ValueError as e:
        raise ValueError("Rank check failed for %s: %s"
                         % (value.name, str(e)))
    return new_value 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:39,代碼來源:sequence_queueing_state_saver.py

示例9: insert_transformed_feature

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def insert_transformed_feature(self, columns_to_tensors):
    """Handles sparse column to id conversion."""
    sparse_tensor = columns_to_tensors[self.name]
    if self.dtype.is_integer:
      sparse_values = string_ops.as_string(sparse_tensor.values)
    else:
      sparse_values = sparse_tensor.values

    sparse_id_values = string_ops.string_to_hash_bucket_fast(
        sparse_values, self.bucket_size, name="lookup")
    columns_to_tensors[self] = sparse_tensor_py.SparseTensor(
        sparse_tensor.indices, sparse_id_values, sparse_tensor.shape) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:14,代碼來源:feature_column.py

示例10: _all_classes

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _all_classes(logits, n_classes, label_vocabulary=None):
  batch_size = tf.compat.v1.shape(logits)[0]
  if label_vocabulary:
    classes_list = label_vocabulary
  else:
    classes_list = string_ops.as_string(tf.range(n_classes))
  return tf.tile(
      input=tf.compat.v1.expand_dims(input=classes_list, axis=0),
      multiples=[batch_size, 1]) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:11,代碼來源:head.py

示例11: _classification_output

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _classification_output(scores, n_classes, label_vocabulary=None):
  batch_size = tf.compat.v1.shape(scores)[0]
  if label_vocabulary:
    export_class_list = label_vocabulary
  else:
    export_class_list = string_ops.as_string(tf.range(n_classes))
  export_output_classes = tf.tile(
      input=tf.compat.v1.expand_dims(input=export_class_list, axis=0),
      multiples=[batch_size, 1])
  return export_output.ClassificationOutput(
      scores=scores,
      # `ClassificationOutput` requires string classes.
      classes=export_output_classes) 
開發者ID:tensorflow,項目名稱:estimator,代碼行數:15,代碼來源:head.py

示例12: _check_shape

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _check_shape(value, expected_shape):
  """Check the shape of Tensor `value`, via shape inference and assertions.

  Args:
    value: A Tensor, possibly with shape associated shape information.
    expected_shape: a `TensorShape`, list of `int32`, or a vector `Tensor`.

  Returns:
    new_value: A Tensor matching `value`.  Accessing this tensor tests
      assertions on its shape.  If expected_shape is not a `Tensor`, then
      new_value's shape has been set.

  Raises:
    ValueError: if `expected_shape` is not a `Tensor` and the shape of `value`
      is known and is not equal to `expected_shape`.
  """
  assert isinstance(value, ops.Tensor)
  if isinstance(expected_shape, tensor_shape.TensorShape):
    expected_shape = expected_shape.as_list()
  if isinstance(expected_shape, ops.Tensor):
    expected_shape_value = tensor_util.constant_value(expected_shape)
    if expected_shape_value is not None:
      expected_shape = [int(d) for d in expected_shape_value]
  if isinstance(expected_shape, ops.Tensor):
    value = _check_rank(value, array_ops.size(expected_shape))
  else:
    value = _check_rank(value, len(expected_shape))
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.reduce_all(
              math_ops.equal(expected_shape, array_ops.shape(value))), [
                  string_ops.string_join([
                      "Shape of tensor %s should be: " % value.name,
                      string_ops.as_string(expected_shape),
                      ", shape received: ",
                      string_ops.as_string(array_ops.shape(value))
                  ])
              ])
  ]):
    new_value = array_ops.identity(value, name="shape_checked")
    if not isinstance(expected_shape, ops.Tensor):
      try:
        new_value.set_shape(new_value.get_shape().merge_with(expected_shape))
      except ValueError as e:
        raise ValueError("Shape check failed for %s: %s" % (value.name, str(e)))
    return new_value 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:48,代碼來源:sequence_queueing_state_saver.py

示例13: _check_shape

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _check_shape(value, expected_shape):
  """Check the shape of Tensor `value`, via shape inference and assertions.

  Args:
    value: A Tensor, possibly with shape associated shape information.
    expected_shape: a `TensorShape`, list of `int32`, or a vector `Tensor`.

  Returns:
    new_value: A Tensor matching `value`.  Accessing this tensor tests
      assertions on its shape.  If expected_shape is not a `Tensor`, then
      new_value's shape has been set.

  Raises:
    ValueError: if `expected_shape` is not a `Tensor` and the shape of `value`
      is known and is not equal to `expected_shape`.
  """
  assert isinstance(value, ops.Tensor)
  if isinstance(expected_shape, tensor_shape.TensorShape):
    expected_shape = expected_shape.as_list()
  if isinstance(expected_shape, ops.Tensor):
    expected_shape_value = tensor_util.constant_value(expected_shape)
    if expected_shape_value is not None:
      expected_shape = [int(d) for d in expected_shape_value]
  if isinstance(expected_shape, ops.Tensor):
    value = _check_rank(value, array_ops.size(expected_shape))
  else:
    value = _check_rank(value, len(expected_shape))
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.reduce_all(math_ops.equal(expected_shape, array_ops.shape(
              value))), [string_ops.string_join([
                  "Shape of tensor %s should be: " % value.name,
                  string_ops.as_string(expected_shape), ", shape received: ",
                  string_ops.as_string(array_ops.shape(value))
              ])])
  ]):
    new_value = array_ops.identity(value, name="shape_checked")
    if not isinstance(expected_shape, ops.Tensor):
      try:
        new_value.set_shape(new_value.get_shape().merge_with(expected_shape))
      except ValueError as e:
        raise ValueError("Shape check failed for %s: %s"
                         % (value.name, str(e)))
    return new_value 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:46,代碼來源:sequence_queueing_state_saver.py

示例14: _padding

# 需要導入模塊: from tensorflow.python.ops import string_ops [as 別名]
# 或者: from tensorflow.python.ops.string_ops import as_string [as 別名]
def _padding(sequences, num_unroll):
  """For a dictionary of sequences, pads tensors to a multiple of `num_unroll`.

  Args:
    sequences: dictionary with `Tensor` values.
    num_unroll: int specifying to what multiple to pad sequences to.
  Returns:
    length: Scalar `Tensor` of dimension 0 of all the values in sequences.
    padded_sequence: Dictionary of sequences that are padded to a multiple of
      `num_unroll`.
  Raises:
    ValueError: If `num_unroll` not an int or sequences not a dictionary from
                string to `Tensor`.
  """
  if not isinstance(num_unroll, numbers.Integral):
    raise ValueError("Unsupported num_unroll expected int, got: %s" %
                     str(num_unroll))
  if not isinstance(sequences, dict):
    raise TypeError("Unsupported sequences expected dict, got: %s" %
                    str(sequences))
  for key, value in sequences.items():
    if not isinstance(key, six.string_types):
      raise TypeError("Unsupported sequences key expected string, got: %s" %
                      str(key))
  if not sequences:
    return 0, {}

  sequences_dict = {}
  for key, value in sequences.items():
    sequences_dict[key] = ops.convert_to_tensor(value)

  lengths = [array_ops.shape(value)[0] for value in sequences_dict.values()]
  length = lengths[0]
  all_lengths_equal = [
      control_flow_ops.Assert(
          math_ops.equal(l, length), [string_ops.string_join(
              ["All sequence lengths must match, but received lengths: ",
               string_ops.as_string(lengths)])])
      for l in lengths]

  length = control_flow_ops.with_dependencies(all_lengths_equal, length)
  unroll = array_ops.constant(num_unroll)
  padded_length = length + ((unroll - (length % unroll)) % unroll)
  padded_sequences = {}
  for key, value in sequences_dict.items():
    # 1. create shape of paddings
    # first dimension of value will be increased by num_paddings to
    # padded_length
    num_paddings = [padded_length - array_ops.shape(value)[0]]
    # the shape of the paddings that we concat with the original value will be
    # [num_paddings, tf.shape(value)[1], tf.shape(value)[2], ...,
    #  tf.shape(value)[tf.rank(value) - 1])]
    padding_shape = array_ops.concat(0, (
        num_paddings, array_ops.shape(value)[1:]))
    # 2. fill padding shape with dummies
    dummy = array_ops.constant("" if value.dtype == dtypes.string else 0,
                               dtype=value.dtype)
    paddings = array_ops.fill(dims=padding_shape, value=dummy)
    # 3. concat values with paddings
    padded_sequences[key] = array_ops.concat(0, [value, paddings])
  return length, padded_sequences 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:63,代碼來源:sequence_queueing_state_saver.py


注:本文中的tensorflow.python.ops.string_ops.as_string方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。