當前位置: 首頁>>代碼示例>>Python>>正文


Python state_ops.is_variable_initialized方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.state_ops.is_variable_initialized方法的典型用法代碼示例。如果您正苦於以下問題:Python state_ops.is_variable_initialized方法的具體用法?Python state_ops.is_variable_initialized怎麽用?Python state_ops.is_variable_initialized使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.state_ops的用法示例。


在下文中一共展示了state_ops.is_variable_initialized方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: initialized_value

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import is_variable_initialized [as 別名]
def initialized_value(self):
    """Returns the value of the initialized variable.

    You should use this instead of the variable itself to initialize another
    variable with a value that depends on the value of this variable.

    ```python
    # Initialize 'v' with a random tensor.
    v = tf.Variable(tf.truncated_normal([10, 40]))
    # Use `initialized_value` to guarantee that `v` has been
    # initialized before its value is used to initialize `w`.
    # The random values are picked only once.
    w = tf.Variable(v.initialized_value() * 2.0)
    ```

    Returns:
      A `Tensor` holding the value of this variable after its initializer
      has run.
    """
    with ops.control_dependencies(None):
      return control_flow_ops.cond(is_variable_initialized(self),
                                   self.read_value,
                                   lambda: self.initial_value) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:variables.py

示例2: testUninitializedRefIdentity

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import is_variable_initialized [as 別名]
def testUninitializedRefIdentity(self):
    with self.test_session() as sess:
      v = gen_state_ops._variable(shape=[1], dtype=tf.float32, 
          name="v", container="", shared_name="")      
      inited = state_ops.is_variable_initialized(v)
      v_f, v_t = control_flow_ops.ref_switch(v, inited)
      # Both v_f and v_t are uninitialized references. However, an actual use
      # of the reference in the 'true' branch in the 'tf.identity' op will
      # not 'fire' when v is uninitialized, so this is a valid construction.
      # This test tests that _ref_identity allows uninitialized ref as input
      # so that this construction is allowed.
      v_f_op = gen_array_ops._ref_identity(v_f)
      v_t_op = gen_array_ops._ref_identity(v_t)
      with tf.control_dependencies([v_f_op]):
        assign_v = tf.assign(v, [1.0])
      with tf.control_dependencies([v_t_op]):
        orig_v = tf.identity(v)
      merged_op = control_flow_ops.merge([assign_v, orig_v])
      self.assertAllEqual([1.0], sess.run(merged_op.output)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:control_flow_ops_py_test.py

示例3: is_variable_initialized

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import is_variable_initialized [as 別名]
def is_variable_initialized(variable):
  """Tests if a variable has been initialized.

  Args:
    variable: A `Variable`.

  Returns:
    Returns a scalar boolean Tensor, `True` if the variable has been
    initialized, `False` otherwise.
  """
  return state_ops.is_variable_initialized(variable) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:variables.py

示例4: report_uninitialized_variables

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import is_variable_initialized [as 別名]
def report_uninitialized_variables(var_list=None,
                                   name="report_uninitialized_variables"):
  """Adds ops to list the names of uninitialized variables.

  When run, it returns a 1-D tensor containing the names of uninitialized
  variables if there are any, or an empty array if there are none.

  Args:
    var_list: List of `Variable` objects to check. Defaults to the
      value of `global_variables() + local_variables()`
    name: Optional name of the `Operation`.

  Returns:
    A 1-D tensor containing names of the uninitialized variables, or an empty
    1-D tensor if there are no variables or no uninitialized variables.
  """
  if var_list is None:
    var_list = global_variables() + local_variables()
    # Backwards compatibility for old-style variables. TODO(touts): remove.
    if not var_list:
      var_list = []
      for op in ops.get_default_graph().get_operations():
        if op.type in ["Variable", "VariableV2", "AutoReloadVariable"]:
          var_list.append(op.outputs[0])
  with ops.name_scope(name):
    if not var_list:
      # Return an empty tensor so we only need to check for returned tensor
      # size being 0 as an indication of model ready.
      return array_ops.constant([], dtype=dtypes.string)
    else:
      # Get a 1-D boolean tensor listing whether each variable is initialized.
      variables_mask = math_ops.logical_not(
          array_ops.stack(
              [state_ops.is_variable_initialized(v) for v in var_list]))
      # Get a 1-D string tensor containing all the variable names.
      variable_names_tensor = array_ops.constant([s.op.name for s in var_list])
      # Return a 1-D tensor containing all the names of uninitialized variables.
      return array_ops.boolean_mask(variable_names_tensor, variables_mask)

# pylint: disable=protected-access 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:42,代碼來源:variables.py

示例5: report_uninitialized_variables

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import is_variable_initialized [as 別名]
def report_uninitialized_variables(var_list=None,
                                   name="report_uninitialized_variables"):
  """Adds ops to list the names of uninitialized variables.

  When run, it returns a 1-D tensor containing the names of uninitialized
  variables if there are any, or an empty array if there are none.

  Args:
    var_list: List of `Variable` objects to check. Defaults to the
      value of `global_variables() + local_variables()`
    name: Optional name of the `Operation`.

  Returns:
    A 1-D tensor containing names of the uninitialized variables, or an empty
    1-D tensor if there are no variables or no uninitialized variables.
  """
  if var_list is None:
    var_list = global_variables() + local_variables()
    # Backwards compatibility for old-style variables. TODO(touts): remove.
    if not var_list:
      var_list = []
      for op in ops.get_default_graph().get_operations():
        if op.type in ["Variable", "AutoReloadVariable"]:
          var_list.append(op.outputs[0])
  with ops.name_scope(name):
    if not var_list:
      # Return an empty tensor so we only need to check for returned tensor
      # size being 0 as an indication of model ready.
      return array_ops.constant([], dtype=dtypes.string)
    else:
      # Get a 1-D boolean tensor listing whether each variable is initialized.
      variables_mask = math_ops.logical_not(array_ops.pack(
          [state_ops.is_variable_initialized(v) for v in var_list]))
      # Get a 1-D string tensor containing all the variable names.
      variable_names_tensor = array_ops.constant([s.op.name for s in var_list])
      # Return a 1-D tensor containing all the names of uninitialized variables.
      return array_ops.boolean_mask(variable_names_tensor, variables_mask)

# pylint: disable=protected-access 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:41,代碼來源:variables.py

示例6: report_uninitialized_variables

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import is_variable_initialized [as 別名]
def report_uninitialized_variables(var_list=None,
                                   name="report_uninitialized_variables"):
  """Adds ops to list the names of uninitialized variables.

  When run, it returns a 1-D tensor containing the names of uninitialized
  variables if there are any, or an empty array if there are none.

  Args:
    var_list: List of `Variable` objects to check. Defaults to the
      value of `global_variables() + local_variables()`
    name: Optional name of the `Operation`.

  Returns:
    A 1-D tensor containing names of the uninitialized variables, or an empty
    1-D tensor if there are no variables or no uninitialized variables.
  """
  if var_list is None:
    var_list = global_variables() + local_variables()
    # Backwards compatibility for old-style variables. TODO(touts): remove.
    if not var_list:
      var_list = []
      for op in ops.get_default_graph().get_operations():
        if op.type in ["Variable", "VariableV2", "AutoReloadVariable"]:
          var_list.append(op.outputs[0])
  with ops.name_scope(name):
    # Run all operations on CPU
    with ops.device("/cpu:0"):
      if not var_list:
        # Return an empty tensor so we only need to check for returned tensor
        # size being 0 as an indication of model ready.
        return array_ops.constant([], dtype=dtypes.string)
      else:
        # Get a 1-D boolean tensor listing whether each variable is initialized.
        variables_mask = math_ops.logical_not(
            array_ops.stack(
                [state_ops.is_variable_initialized(v) for v in var_list]))
        # Get a 1-D string tensor containing all the variable names.
        variable_names_tensor = array_ops.constant(
            [s.op.name for s in var_list])
        # Return a 1-D tensor containing all the names of
        # uninitialized variables.
        return array_ops.boolean_mask(variable_names_tensor, variables_mask)

# pylint: disable=protected-access 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:46,代碼來源:variables.py


注:本文中的tensorflow.python.ops.state_ops.is_variable_initialized方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。