當前位置: 首頁>>代碼示例>>Python>>正文


Python state_ops.init_variable方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.state_ops.init_variable方法的典型用法代碼示例。如果您正苦於以下問題:Python state_ops.init_variable方法的具體用法?Python state_ops.init_variable怎麽用?Python state_ops.init_variable使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.state_ops的用法示例。


在下文中一共展示了state_ops.init_variable方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _AddVariable

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import init_variable [as 別名]
def _AddVariable(self, shape, dtype, name, initializer=None):
    if name in self.variables:
      return self.variables[name]
    self.variables[name] = tf.get_variable(name, shape, dtype, initializer)
    if initializer is not None:
      self.inits[name] = state_ops.init_variable(self.variables[name],
                                                 initializer)
    return self.variables[name] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:graph_builder.py

示例2: _AddParam

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import init_variable [as 別名]
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:46,代碼來源:graph_builder.py

示例3: AddTraining

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import init_variable [as 別名]
def AddTraining(self,
                  task_context,
                  batch_size,
                  learning_rate=0.1,
                  decay_steps=4000,
                  momentum=0.9,
                  corpus_name='documents'):
    """Builds a trainer to minimize the cross entropy cost function.

    Args:
      task_context: file path from which to read the task context
      batch_size: batch size to request from reader op
      learning_rate: initial value of the learning rate
      decay_steps: decay learning rate by 0.96 every this many steps
      momentum: momentum parameter used when training with momentum
      corpus_name: name of the task input to read parses from

    Returns:
      Dictionary of named training nodes.
    """
    with tf.name_scope('training'):
      nodes = self.training
      nodes.update(self._AddGoldReader(task_context, batch_size, corpus_name))
      nodes.update(self._BuildNetwork(nodes['feature_endpoints'],
                                      return_average=False))
      nodes.update(self._AddCostFunction(batch_size, nodes['gold_actions'],
                                         nodes['logits']))
      # Add the optimizer
      if self._only_train:
        trainable_params = [v
                            for k, v in self.params.iteritems()
                            if k in self._only_train]
      else:
        trainable_params = self.params.values()
      lr = self._AddLearningRate(learning_rate, decay_steps)
      optimizer = tf.train.MomentumOptimizer(lr,
                                             momentum,
                                             use_locking=self._use_locking)
      train_op = optimizer.minimize(nodes['cost'], var_list=trainable_params)
      for param in trainable_params:
        slot = optimizer.get_slot(param, 'momentum')
        self.inits[slot.name] = state_ops.init_variable(slot,
                                                        tf.zeros_initializer())
        self.variables[slot.name] = slot
      numerical_checks = [
          tf.check_numerics(param,
                            message='Parameter is not finite.')
          for param in trainable_params
          if param.dtype.base_dtype in [tf.float32, tf.float64]
      ]
      check_op = tf.group(*numerical_checks)
      avg_update_op = tf.group(*self._averaging.values())
      train_ops = [train_op]
      if self._check_parameters:
        train_ops.append(check_op)
      if self._use_averaging:
        train_ops.append(avg_update_op)
      nodes['train_op'] = tf.group(*train_ops, name='train_op')
    return nodes 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:61,代碼來源:graph_builder.py

示例4: _AddParam

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import init_variable [as 別名]
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer)
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
開發者ID:coderSkyChen,項目名稱:Action_Recognition_Zoo,代碼行數:46,代碼來源:graph_builder.py

示例5: AddTraining

# 需要導入模塊: from tensorflow.python.ops import state_ops [as 別名]
# 或者: from tensorflow.python.ops.state_ops import init_variable [as 別名]
def AddTraining(self,
                  task_context,
                  batch_size,
                  learning_rate=0.1,
                  decay_steps=4000,
                  momentum=0.9,
                  corpus_name='documents'):
    """Builds a trainer to minimize the cross entropy cost function.

    Args:
      task_context: file path from which to read the task context
      batch_size: batch size to request from reader op
      learning_rate: initial value of the learning rate
      decay_steps: decay learning rate by 0.96 every this many steps
      momentum: momentum parameter used when training with momentum
      corpus_name: name of the task input to read parses from

    Returns:
      Dictionary of named training nodes.
    """
    with tf.name_scope('training'):
      nodes = self.training
      nodes.update(self._AddGoldReader(task_context, batch_size, corpus_name))
      nodes.update(self._BuildNetwork(nodes['feature_endpoints'],
                                      return_average=False))
      nodes.update(self._AddCostFunction(batch_size, nodes['gold_actions'],
                                         nodes['logits']))
      # Add the optimizer
      if self._only_train:
        trainable_params = [v
                            for k, v in self.params.iteritems()
                            if k in self._only_train]
      else:
        trainable_params = self.params.values()
      lr = self._AddLearningRate(learning_rate, decay_steps)
      optimizer = tf.train.MomentumOptimizer(lr,
                                             momentum,
                                             use_locking=self._use_locking)
      train_op = optimizer.minimize(nodes['cost'], var_list=trainable_params)
      for param in trainable_params:
        slot = optimizer.get_slot(param, 'momentum')
        self.inits[slot.name] = state_ops.init_variable(slot,
                                                        tf.zeros_initializer)
        self.variables[slot.name] = slot
      numerical_checks = [
          tf.check_numerics(param,
                            message='Parameter is not finite.')
          for param in trainable_params
          if param.dtype.base_dtype in [tf.float32, tf.float64]
      ]
      check_op = tf.group(*numerical_checks)
      avg_update_op = tf.group(*self._averaging.values())
      train_ops = [train_op]
      if self._check_parameters:
        train_ops.append(check_op)
      if self._use_averaging:
        train_ops.append(avg_update_op)
      nodes['train_op'] = tf.group(*train_ops, name='train_op')
    return nodes 
開發者ID:coderSkyChen,項目名稱:Action_Recognition_Zoo,代碼行數:61,代碼來源:graph_builder.py


注:本文中的tensorflow.python.ops.state_ops.init_variable方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。