當前位置: 首頁>>代碼示例>>Python>>正文


Python standard_ops.reduce_sum方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.standard_ops.reduce_sum方法的典型用法代碼示例。如果您正苦於以下問題:Python standard_ops.reduce_sum方法的具體用法?Python standard_ops.reduce_sum怎麽用?Python standard_ops.reduce_sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.standard_ops的用法示例。


在下文中一共展示了standard_ops.reduce_sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mean_squared_error

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def mean_squared_error(output, target, is_mean=False):
    """Return the TensorFlow expression of mean-squre-error of two distributions.

    Parameters
    ----------
    output : 2D or 4D tensor.
    target : 2D or 4D tensor.
    is_mean : boolean, if True, use ``tf.reduce_mean`` to compute the loss of one data, otherwise, use ``tf.reduce_sum`` (default).

    References
    ------------
    - `Wiki Mean Squared Error <https://en.wikipedia.org/wiki/Mean_squared_error>`_
    """
    with tf.name_scope("mean_squared_error_loss"):
        if output.get_shape().ndims == 2:   # [batch_size, n_feature]
            if is_mean:
                mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), 1))
            else:
                mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), 1))
        elif output.get_shape().ndims == 4: # [batch_size, w, h, c]
            if is_mean:
                mse = tf.reduce_mean(tf.reduce_mean(tf.squared_difference(output, target), [1, 2, 3]))
            else:
                mse = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, target), [1, 2, 3]))
        return mse 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:27,代碼來源:cost.py

示例2: normalized_mean_square_error

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def normalized_mean_square_error(output, target):
    """Return the TensorFlow expression of normalized mean-squre-error of two distributions.

    Parameters
    ----------
    output : 2D or 4D tensor.
    target : 2D or 4D tensor.
    """
    with tf.name_scope("mean_squared_error_loss"):
        if output.get_shape().ndims == 2:   # [batch_size, n_feature]
            nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=1))
            nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=1))
        elif output.get_shape().ndims == 4: # [batch_size, w, h, c]
            nmse_a = tf.sqrt(tf.reduce_sum(tf.squared_difference(output, target), axis=[1,2,3]))
            nmse_b = tf.sqrt(tf.reduce_sum(tf.square(target), axis=[1,2,3]))
        nmse = tf.reduce_mean(nmse_a / nmse_b)
    return nmse 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:19,代碼來源:cost.py

示例3: cosine_similarity

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def cosine_similarity(v1, v2):
    """Cosine similarity [-1, 1], `wiki <https://en.wikipedia.org/wiki/Cosine_similarity>`_.

    Parameters
    -----------
    v1, v2 : tensor of [batch_size, n_feature], with the same number of features.

    Returns
    -----------
    a tensor of [batch_size, ]
    """
    try: ## TF1.0
        cost = tf.reduce_sum(tf.multiply(v1, v2), 1) / (tf.sqrt(tf.reduce_sum(tf.multiply(v1, v1), 1)) * tf.sqrt(tf.reduce_sum(tf.multiply(v2, v2), 1)))
    except: ## TF0.12
        cost = tf.reduce_sum(tf.mul(v1, v2), reduction_indices=1) / (tf.sqrt(tf.reduce_sum(tf.mul(v1, v1), reduction_indices=1)) * tf.sqrt(tf.reduce_sum(tf.mul(v2, v2), reduction_indices=1)))
    return cost


## Regularization Functions 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:21,代碼來源:cost.py

示例4: testIndexedSlicesGradient

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def testIndexedSlicesGradient(self):
    with ops.Graph().as_default():
      embedding_matrix = tf.get_variable(
          "embedding_matrix", [5, 5],
          initializer=tf.random_normal_initializer())
      def Cond(it, _):
        return it < 5
      def Body(it, cost):
        embedding = embedding_ops.embedding_lookup(embedding_matrix + 0.0, [0])
        cost += tf.reduce_sum(embedding)
        return it + 1, cost
      _, cost = control_flow_ops.while_loop(
          Cond, Body, [tf.constant(0), tf.constant(0.0)])
      optimizer = momentum.MomentumOptimizer(0.1, 0.9)
      train_op = optimizer.minimize(cost)
      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())
        for _ in range(10):
          sess.run([train_op]) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:control_flow_ops_test.py

示例5: testIndexedSlicesWithDynamicShapeGradientInWhileLoop

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def testIndexedSlicesWithDynamicShapeGradientInWhileLoop(self):
    for dtype in [dtypes.float32, dtypes.float64]:
      with self.test_session() as sess:
        inputs = tf.placeholder(dtype=dtype)
        initial_outputs = tf.TensorArray(dtype=dtype, dynamic_size=True,
                                         size=1)
        initial_i = tf.constant(0, dtype=dtypes.int32)

        def Cond(i, _):
          return i < tf.size(inputs)  # pylint: disable=cell-var-from-loop

        def Body(i, outputs):
          x = tf.gather(inputs, i)  # pylint: disable=cell-var-from-loop
          outputs = outputs.write(i, x)
          return i + 1, outputs

        _, outputs = tf.while_loop(Cond, Body, [initial_i, initial_outputs])

        outputs = tf.reduce_sum(outputs.pack())
        r = tf.gradients([outputs], [inputs])[0]
        grad_wr_inputs = ops.convert_to_tensor(r)
        o, grad = sess.run([outputs, grad_wr_inputs],
                           feed_dict={inputs: [1, 3, 2]})
        self.assertEquals(o, 6)
        self.assertAllEqual(grad, [1] * 3) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:control_flow_ops_test.py

示例6: l1_regularizer

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def l1_regularizer(scale, scope=None):
  """Returns a function that can be used to apply L1 regularization to weights.

  L1 regularization encourages sparsity.

  Args:
    scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
    scope: An optional scope name.

  Returns:
    A function with signature `l1(weights)` that apply L1 regularization.

  Raises:
    ValueError: If scale is negative or if scale is not a float.
  """
  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % scale)
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g' %
                       scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _: None

  def l1(weights, name=None):
    """Applies L1 regularization to weights."""
    with ops.name_scope(scope, 'l1_regularizer', [weights]) as name:
      my_scale = ops.convert_to_tensor(scale,
                                       dtype=weights.dtype.base_dtype,
                                       name='scale')
      return standard_ops.multiply(
          my_scale,
          standard_ops.reduce_sum(standard_ops.abs(weights)),
          name=name)

  return l1 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:39,代碼來源:regularizers.py

示例7: binary_cross_entropy

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def binary_cross_entropy(output, target, epsilon=1e-8, name='bce_loss'):
    """Computes binary cross entropy given `output`.

    For brevity, let `x = output`, `z = target`.  The binary cross entropy loss is

        loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))

    Parameters
    ----------
    output : tensor of type `float32` or `float64`.
    target : tensor of the same type and shape as `output`.
    epsilon : float
        A small value to avoid output is zero.
    name : string
        An optional name to attach to this layer.

    References
    -----------
    - `DRAW <https://github.com/ericjang/draw/blob/master/draw.py#L73>`_
    """
#     from tensorflow.python.framework import ops
#     with ops.op_scope([output, target], name, "bce_loss") as name:
#         output = ops.convert_to_tensor(output, name="preds")
#         target = ops.convert_to_tensor(targets, name="target")
    with tf.name_scope(name):
        return tf.reduce_mean(tf.reduce_sum(-(target * tf.log(output + epsilon) +
                              (1. - target) * tf.log(1. - output + epsilon)), axis=1)) 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:29,代碼來源:cost.py

示例8: dice_coe

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def dice_coe(output, target, epsilon=1e-10):
    """Sørensen–Dice coefficient for comparing the similarity of two distributions,
    usually be used for binary image segmentation i.e. labels are binary.
    The coefficient = [0, 1], 1 if totally match.

    Parameters
    -----------
    output : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    target : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    epsilon : float
        An optional name to attach to this layer.

    Examples
    ---------
    >>> outputs = tl.act.pixel_wise_softmax(network.outputs)
    >>> dice_loss = 1 - tl.cost.dice_coe(outputs, y_, epsilon=1e-5)

    References
    -----------
    - `wiki-dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`_
    """
    # inse = tf.reduce_sum( tf.mul(output, target) )
    # l = tf.reduce_sum( tf.mul(output, output) )
    # r = tf.reduce_sum( tf.mul(target, target) )
    inse = tf.reduce_sum( output * target )
    l = tf.reduce_sum( output * output )
    r = tf.reduce_sum( target * target )
    dice = 2 * (inse) / (l + r)
    if epsilon == 0:
        return dice
    else:
        return tf.clip_by_value(dice, 0, 1.0-epsilon) 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:36,代碼來源:cost.py

示例9: dice_hard_coe

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def dice_hard_coe(output, target, epsilon=1e-10):
    """Non-differentiable Sørensen–Dice coefficient for comparing the similarity of two distributions,
    usually be used for binary image segmentation i.e. labels are binary.
    The coefficient = [0, 1], 1 if totally match.

    Parameters
    -----------
    output : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    target : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    epsilon : float
        An optional name to attach to this layer.

    Examples
    ---------
    >>> outputs = pixel_wise_softmax(network.outputs)
    >>> dice_loss = 1 - dice_coe(outputs, y_, epsilon=1e-5)

    References
    -----------
    - `wiki-dice <https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient>`_
    """
    output = tf.cast(output > 0.5, dtype=tf.float32)
    target = tf.cast(target > 0.5, dtype=tf.float32)
    inse = tf.reduce_sum( output * target )
    l = tf.reduce_sum( output * output )
    r = tf.reduce_sum( target * target )
    dice = 2 * (inse) / (l + r)
    if epsilon == 0:
        return dice
    else:
        return tf.clip_by_value(dice, 0, 1.0-epsilon) 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:35,代碼來源:cost.py

示例10: cross_entropy_seq

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def cross_entropy_seq(logits, target_seqs, batch_size=None):#, batch_size=1, num_steps=None):
    """Returns the expression of cross-entropy of two sequences, implement
    softmax internally. Normally be used for Fixed Length RNN outputs.

    Parameters
    ----------
    logits : Tensorflow variable
        2D tensor, ``network.outputs``, [batch_size*n_steps (n_examples), number of output units]
    target_seqs : Tensorflow variable
        target : 2D tensor [batch_size, n_steps], if the number of step is dynamic, please use ``cross_entropy_seq_with_mask`` instead.
    batch_size : None or int.
        If not None, the return cost will be divided by batch_size.

    Examples
    --------
    >>> see PTB tutorial for more details
    >>> input_data = tf.placeholder(tf.int32, [batch_size, num_steps])
    >>> targets = tf.placeholder(tf.int32, [batch_size, num_steps])
    >>> cost = tl.cost.cross_entropy_seq(network.outputs, targets)
    """
    try: # TF 1.0
        sequence_loss_by_example_fn = tf.contrib.legacy_seq2seq.sequence_loss_by_example
    except:
        sequence_loss_by_example_fn = tf.nn.seq2seq.sequence_loss_by_example

    loss = sequence_loss_by_example_fn(
        [logits],
        [tf.reshape(target_seqs, [-1])],
        [tf.ones_like(tf.reshape(target_seqs, [-1]), dtype=tf.float32)])
        # [tf.ones([batch_size * num_steps])])
    cost = tf.reduce_sum(loss) #/ batch_size
    if batch_size is not None:
        cost = cost / batch_size
    return cost 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:36,代碼來源:cost.py

示例11: cross_entropy_seq_with_mask

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def cross_entropy_seq_with_mask(logits, target_seqs, input_mask, return_details=False, name=None):
    """Returns the expression of cross-entropy of two sequences, implement
    softmax internally. Normally be used for Dynamic RNN outputs.

    Parameters
    -----------
    logits : network identity outputs
        2D tensor, ``network.outputs``, [batch_size, number of output units].
    target_seqs : int of tensor, like word ID.
        [batch_size, ?]
    input_mask : the mask to compute loss
        The same size with target_seqs, normally 0 and 1.
    return_details : boolean
        - If False (default), only returns the loss.
        - If True, returns the loss, losses, weights and targets (reshape to one vetcor).

    Examples
    --------
    - see Image Captioning Example.
    """
    targets = tf.reshape(target_seqs, [-1])   # to one vector
    weights = tf.to_float(tf.reshape(input_mask, [-1]))   # to one vector like targets
    losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name) * weights
    #losses = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets, name=name)) # for TF1.0 and others

    try: ## TF1.0
        loss = tf.divide(tf.reduce_sum(losses),   # loss from mask. reduce_sum before element-wise mul with mask !!
                        tf.reduce_sum(weights),
                        name="seq_loss_with_mask")
    except: ## TF0.12
        loss = tf.div(tf.reduce_sum(losses),   # loss from mask. reduce_sum before element-wise mul with mask !!
                        tf.reduce_sum(weights),
                        name="seq_loss_with_mask")
    if return_details:
        return loss, losses, weights, targets
    else:
        return loss 
開發者ID:zjuela,項目名稱:LapSRN-tensorflow,代碼行數:39,代碼來源:cost.py

示例12: testIndexedSlicesGradientInCondInWhileLoop

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def testIndexedSlicesGradientInCondInWhileLoop(self):
    with ops.Graph().as_default():
      embedding_matrix = tf.get_variable(
          "embedding_matrix", [5, 5],
          initializer=tf.random_normal_initializer())

      def Cond(it, _):
        return it < 5
      def Body(it, cost):
        embedding = embedding_ops.embedding_lookup(embedding_matrix, [0])
        cost = tf.cond(tf.equal(it, 3),
                       lambda: tf.square(cost),
                       lambda: cost + tf.reduce_sum(embedding))
        return it + 1, cost
      _, cost = control_flow_ops.while_loop(
          Cond, Body, [tf.constant(0), tf.constant(0.0)])

      dynamic_grads = tf.gradients(cost, [embedding_matrix])[0]
      dynamic_grads = tf.segment_sum(dynamic_grads.values,
                                     dynamic_grads.indices)

      embedding = embedding_ops.embedding_lookup(embedding_matrix, [0])
      static = tf.square(
          tf.reduce_sum(embedding) +
          tf.reduce_sum(embedding) +
          tf.reduce_sum(embedding)) + tf.reduce_sum(embedding)
      static_grads = tf.gradients(static, [embedding_matrix])[0]
      static_grads = tf.segment_sum(static_grads.values, static_grads.indices)

      with self.test_session() as sess:
        sess.run(tf.global_variables_initializer())
        self.assertAllEqual(*sess.run([static_grads, dynamic_grads])) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:34,代碼來源:control_flow_ops_test.py

示例13: testIndexedSlicesWithShapeGradientInWhileLoop

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def testIndexedSlicesWithShapeGradientInWhileLoop(self):
    for dtype in [dtypes.float32, dtypes.float64]:
      with self.test_session() as sess:
        num_steps = 9

        inputs = tf.placeholder(dtype=dtype, shape=[num_steps])
        initial_outputs = tf.TensorArray(dtype=dtype, size=num_steps)
        initial_i = tf.constant(0, dtype=dtypes.int32)

        def Cond(i, _):
          return i < num_steps  # pylint: disable=cell-var-from-loop

        def Body(i, outputs):
          x = tf.gather(inputs, i)  # pylint: disable=cell-var-from-loop
          outputs = outputs.write(i, x)
          return i + 1, outputs

        _, outputs = tf.while_loop(Cond, Body, [initial_i, initial_outputs])

        outputs = tf.reduce_sum(outputs.pack())
        r = tf.gradients([outputs], [inputs])[0]
        grad_wr_inputs = ops.convert_to_tensor(r)
        o, grad = sess.run([outputs, grad_wr_inputs],
                           feed_dict={inputs: [4, 6, 0, 7, 0, 0, 1, 2, 0]})
        self.assertEquals(o, 20)
        self.assertAllEqual(grad, [1] * num_steps) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:control_flow_ops_test.py

示例14: l1_regularizer

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def l1_regularizer(scale, scope=None):
  """Returns a function that can be used to apply L1 regularization to weights.

  L1 regularization encourages sparsity.

  Args:
    scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
    scope: An optional scope name.

  Returns:
    A function with signature `l1(weights)` that apply L1 regularization.

  Raises:
    ValueError: If scale is negative or if scale is not a float.
  """
  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % scale)
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g' %
                       scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _: None

  def l1(weights, name=None):
    """Applies L1 regularization to weights."""
    with ops.name_scope(scope, 'l1_regularizer', [weights]) as name:
      my_scale = ops.convert_to_tensor(scale,
                                       dtype=weights.dtype.base_dtype,
                                       name='scale')
      return standard_ops.mul(
          my_scale,
          standard_ops.reduce_sum(standard_ops.abs(weights)),
          name=name)

  return l1 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:39,代碼來源:regularizers.py

示例15: iou_coe

# 需要導入模塊: from tensorflow.python.ops import standard_ops [as 別名]
# 或者: from tensorflow.python.ops.standard_ops import reduce_sum [as 別名]
def iou_coe(output, target, threshold=0.5, epsilon=1e-10):
    """Non-differentiable Intersection over Union, usually be used for evaluating binary image segmentation.
    The coefficient = [0, 1], 1 means totally match.

    Parameters
    -----------
    output : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    target : tensor
        A distribution with shape: [batch_size, ....], (any dimensions).
    threshold : float
        The threshold value to be true.
    epsilon : float
        A small value to avoid zero denominator when both output and target output nothing.

    Examples
    ---------
    >>> outputs = tl.act.pixel_wise_softmax(network.outputs)
    >>> iou = tl.cost.iou_coe(outputs[:,:,:,0], y_[:,:,:,0])

    Notes
    ------
    - IOU cannot be used as training loss, people usually use dice coefficient for training, and IOU for evaluating.
    """
    pre = tf.cast(output > threshold, dtype=tf.float32)
    truth = tf.cast(target > threshold, dtype=tf.float32)
    intersection = tf.reduce_sum(pre * truth)
    union = tf.reduce_sum(tf.cast((pre + truth) > threshold, dtype=tf.float32))
    return tf.reduce_sum(intersection) / (tf.reduce_sum(union) + epsilon) 
開發者ID:akaraspt,項目名稱:deepsleepnet,代碼行數:31,代碼來源:cost.py


注:本文中的tensorflow.python.ops.standard_ops.reduce_sum方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。