當前位置: 首頁>>代碼示例>>Python>>正文


Python special_math_ops.lbeta方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.special_math_ops.lbeta方法的典型用法代碼示例。如果您正苦於以下問題:Python special_math_ops.lbeta方法的具體用法?Python special_math_ops.lbeta怎麽用?Python special_math_ops.lbeta使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.special_math_ops的用法示例。


在下文中一共展示了special_math_ops.lbeta方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _log_prob

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _log_prob(self, counts):
    counts = self._maybe_assert_valid_sample(counts)
    ordered_prob = (
        special_math_ops.lbeta(self.concentration + counts)
        - special_math_ops.lbeta(self.concentration))
    return ordered_prob + distribution_util.log_combinations(
        self.total_count, counts) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:9,代碼來源:dirichlet_multinomial.py

示例2: _entropy

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _entropy(self):
    v = array_ops.ones(self.batch_shape_tensor(),
                       dtype=self.dtype)[..., array_ops.newaxis]
    u = v * self.df[..., array_ops.newaxis]
    beta_arg = array_ops.concat([u, v], -1) / 2.
    return (math_ops.log(math_ops.abs(self.scale)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            0.5 * (self.df + 1.) *
            (math_ops.digamma(0.5 * (self.df + 1.)) -
             math_ops.digamma(0.5 * self.df))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:13,代碼來源:student_t.py

示例3: _log_normalization

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _log_normalization(self):
    return special_math_ops.lbeta(self.concentration) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:4,代碼來源:dirichlet.py

示例4: _log_prob

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _log_prob(self, counts):
    counts = self._assert_valid_counts(counts)
    ordered_prob = (special_math_ops.lbeta(self.alpha + counts) -
                    special_math_ops.lbeta(self.alpha))
    log_prob = ordered_prob + distribution_util.log_combinations(
        self.n, counts)
    return log_prob 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:9,代碼來源:dirichlet_multinomial.py

示例5: _entropy

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _entropy(self):
    v = array_ops.ones(self.batch_shape(), dtype=self.dtype)[..., None]
    u = v * self.df[..., None]
    beta_arg = array_ops.concat([u, v], -1) / 2.
    return (math_ops.log(math_ops.abs(self.sigma)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            0.5 * (self.df + 1.) *
            (math_ops.digamma(0.5 * (self.df + 1.)) -
             math_ops.digamma(0.5 * self.df))) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:12,代碼來源:student_t.py

示例6: _log_prob

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _log_prob(self, x):
    x = ops.convert_to_tensor(x, name="x")
    x = self._assert_valid_sample(x)
    unnorm_prob = (self.alpha - 1.) * math_ops.log(x)
    log_prob = math_ops.reduce_sum(
        unnorm_prob, reduction_indices=[-1],
        keep_dims=False) - special_math_ops.lbeta(self.alpha)
    return log_prob 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:10,代碼來源:dirichlet.py

示例7: _entropy

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _entropy(self):
    entropy = special_math_ops.lbeta(self.alpha)
    entropy += math_ops.digamma(self.alpha_sum) * (
        self.alpha_sum - math_ops.cast(self.event_shape()[0], self.dtype))
    entropy += -math_ops.reduce_sum(
        (self.alpha - 1.) * math_ops.digamma(self.alpha),
        reduction_indices=[-1],
        keep_dims=False)
    return entropy 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:11,代碼來源:dirichlet.py

示例8: _entropy

# 需要導入模塊: from tensorflow.python.ops import special_math_ops [as 別名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 別名]
def _entropy(self):
    u = array_ops.expand_dims(self.df * self._ones(), -1)
    v = array_ops.expand_dims(self._ones(), -1)
    beta_arg = array_ops.concat(len(u.get_shape()) - 1, [u, v]) / 2
    half_df = 0.5 * self.df
    return ((0.5 + half_df) * (math_ops.digamma(0.5 + half_df) -
                               math_ops.digamma(half_df)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            math_ops.log(self.sigma)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:student_t.py


注:本文中的tensorflow.python.ops.special_math_ops.lbeta方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。