當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse_ops.sparse_tensor_to_dense方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_tensor_to_dense方法的具體用法?Python sparse_ops.sparse_tensor_to_dense怎麽用?Python sparse_ops.sparse_tensor_to_dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.sparse_ops的用法示例。


在下文中一共展示了sparse_ops.sparse_tensor_to_dense方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def tensors_to_item(self, keys_to_tensors):
    tensor = keys_to_tensors[self._tensor_key]
    shape = self._shape
    if self._shape_keys:
      shape_dims = []
      for k in self._shape_keys:
        shape_dim = keys_to_tensors[k]
        if isinstance(shape_dim, sparse_tensor.SparseTensor):
          shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
        shape_dims.append(shape_dim)
      shape = array_ops.reshape(array_ops.stack(shape_dims), [-1])
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if shape is not None:
        tensor = sparse_ops.sparse_reshape(tensor, shape)
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    else:
      if shape is not None:
        tensor = array_ops.reshape(tensor, shape)
    return tensor 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:tfexample_decoder.py

示例2: to_dense

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def to_dense(tensor):
  """Converts a sparse tensor into a dense tensor and returns it.

  Arguments:
      tensor: A tensor instance (potentially sparse).

  Returns:
      A dense tensor.

  Examples:
  ```python
      >>> from keras import backend as K
      >>> b = K.placeholder((2, 2), sparse=True)
      >>> print(K.is_sparse(b))
      True
      >>> c = K.to_dense(b)
      >>> print(K.is_sparse(c))
      False
  ```
  """
  if is_sparse(tensor):
    return sparse_ops.sparse_tensor_to_dense(tensor)
  else:
    return tensor 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:backend.py

示例3: testCwiseDivAndMul

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def testCwiseDivAndMul(self):
    np.random.seed(1618)
    sp_shapes = [(10, 10, 10), (5, 5), (1618,), (3, 3, 7)]
    dense_shapes = [(10, 10, 1), (5, 5), (1,), (1, 7)]

    with self.test_session(use_gpu=False):
      for dtype in [np.float32, np.float64, np.int32, np.int64]:
        for sp_shape, dense_shape in zip(sp_shapes, dense_shapes):
          sp_vals_np = np.random.rand(*sp_shape).astype(dtype) + 1
          dense_vals_np = np.random.rand(*dense_shape).astype(dtype) + 1
          sp_t, unused_nnz = _sparsify(sp_vals_np, thresh=1.5)
          sp_t_densified = sparse_ops.sparse_tensor_to_dense(sp_t).eval()
          dense_t = tf.constant(dense_vals_np)

          self._check(sp_t / dense_t, sp_t_densified / dense_vals_np, sp_t)
          # Check commutative.
          self._check(sp_t * dense_t, sp_t_densified * dense_vals_np, sp_t)
          self._check(dense_t * sp_t, sp_t_densified * dense_vals_np, sp_t)

          if dtype in [np.int32, np.int64]:
            res = sp_t / dense_t  # should invoke "__truediv__"
            self.assertEqual(res.values.eval().dtype, np.float64) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:sparse_ops_test.py

示例4: testRandom

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def testRandom(self):
    np.random.seed(1618)
    shapes = [(13,), (6, 8), (1, 7, 1)]
    for shape in shapes:
      for dtype in [np.int32, np.int64, np.float16, np.float32, np.float64]:
        a_np = np.random.randn(*shape).astype(dtype)
        b_np = np.random.randn(*shape).astype(dtype)
        sp_a, unused_a_nnz = _sparsify(a_np, thresh=-.5)
        sp_b, unused_b_nnz = _sparsify(b_np, thresh=-.5)

        with self.test_session(use_gpu=False):
          maximum_tf = tf.sparse_maximum(sp_a, sp_b)
          maximum_tf_densified = tf.sparse_tensor_to_dense(maximum_tf).eval()
          minimum_tf = tf.sparse_minimum(sp_a, sp_b)
          minimum_tf_densified = tf.sparse_tensor_to_dense(minimum_tf).eval()

          a_densified = tf.sparse_tensor_to_dense(sp_a).eval()
          b_densified = tf.sparse_tensor_to_dense(sp_b).eval()

        self.assertAllEqual(
            np.maximum(a_densified, b_densified), maximum_tf_densified)
        self.assertAllEqual(
            np.minimum(a_densified, b_densified), minimum_tf_densified) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:25,代碼來源:sparse_ops_test.py

示例5: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def tensors_to_item(self, keys_to_tensors):
    tensor = keys_to_tensors[self._tensor_key]
    shape = self._shape
    if self._shape_keys:
      shape_dims = []
      for k in self._shape_keys:
        shape_dim = keys_to_tensors[k]
        if isinstance(shape_dim, sparse_tensor.SparseTensor):
          shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
        shape_dims.append(shape_dim)
      shape = array_ops.reshape(array_ops.pack(shape_dims), [-1])
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if shape is not None:
        tensor = sparse_ops.sparse_reshape(tensor, shape)
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    else:
      if shape is not None:
        tensor = array_ops.reshape(tensor, shape)
    return tensor 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:tfexample_decoder.py

示例6: call

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def call(self, inputs):
    if isinstance(inputs, ragged_tensor.RaggedTensor):
      # Convert the ragged tensor to a padded uniform tensor
      outputs = inputs.to_tensor(default_value=self._pad_value)
    elif isinstance(inputs, sparse_tensor.SparseTensor):
      # Fill in the missing value in the sparse_tensor
      outputs = sparse_ops.sparse_tensor_to_dense(
          inputs, default_value=self._pad_value)
    elif isinstance(inputs, ops.Tensor):
      outputs = inputs
    else:
      raise TypeError('Unexpected tensor type %s' % type(inputs).__name__)

    if self._mask:
      outputs = self.masking_layer(outputs)

    return outputs 
開發者ID:tensorflow,項目名稱:text,代碼行數:19,代碼來源:todense.py

示例7: _load_batch_pair_pose

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def _load_batch_pair_pose(self, dataset):
        data_provider = slim.dataset_data_provider.DatasetDataProvider(dataset, common_queue_capacity=32, common_queue_min=8)
        image_raw_0, image_raw_1, label, pose_0, pose_1, mask_0, mask_1  = data_provider.get([
            'image_raw_0', 'image_raw_1', 'label', 'pose_sparse_r4_0', 'pose_sparse_r4_1', 'pose_mask_r4_0', 'pose_mask_r4_1'])
        pose_0 = sparse_ops.sparse_tensor_to_dense(pose_0, default_value=0, validate_indices=False)
        pose_1 = sparse_ops.sparse_tensor_to_dense(pose_1, default_value=0, validate_indices=False)

        image_raw_0 = tf.reshape(image_raw_0, [128, 64, 3])        
        image_raw_1 = tf.reshape(image_raw_1, [128, 64, 3]) 
        pose_0 = tf.cast(tf.reshape(pose_0, [128, 64, self.keypoint_num]), tf.float32)
        pose_1 = tf.cast(tf.reshape(pose_1, [128, 64, self.keypoint_num]), tf.float32)
        mask_0 = tf.cast(tf.reshape(mask_0, [128, 64, 1]), tf.float32)
        mask_1 = tf.cast(tf.reshape(mask_1, [128, 64, 1]), tf.float32)

        images_0, images_1, poses_0, poses_1, masks_0, masks_1 = tf.train.batch([image_raw_0, image_raw_1, pose_0, pose_1, mask_0, mask_1], 
                    batch_size=self.batch_size, num_threads=self.num_threads, capacity=self.capacityCoff * self.batch_size)

        images_0 = utils_wgan.process_image(tf.to_float(images_0), 127.5, 127.5)
        images_1 = utils_wgan.process_image(tf.to_float(images_1), 127.5, 127.5)
        poses_0 = poses_0*2-1
        poses_1 = poses_1*2-1
        return images_0, images_1, poses_0, poses_1, masks_0, masks_1 
開發者ID:charliememory,項目名稱:Pose-Guided-Person-Image-Generation,代碼行數:24,代碼來源:trainer.py

示例8: _transform_feature

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def _transform_feature(self, inputs):
    """Returns dense `Tensor` representing feature.

    Args:
      inputs: A `_LazyBuilder` object to access inputs.

    Returns:
      Transformed feature `Tensor`.
    """
    id_weight_pair = self.categorical_column._get_sparse_tensors(inputs)  # pylint: disable=protected-access
    id_tensor = id_weight_pair.id_tensor
    weight_tensor = id_weight_pair.weight_tensor

    # If the underlying column is weighted, return the input as a dense tensor.
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(
          sp_ids=id_tensor,
          sp_values=weight_tensor,
          vocab_size=self._variable_shape[-1])
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(
        id_tensor, default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor,
        depth=self._variable_shape[-1],
        on_value=1.0,
        off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(one_hot_id_tensor, axis=[1]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:feature_column.py

示例9: ParseLabelTensorOrDict

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def ParseLabelTensorOrDict(labels):
  """Return a tensor to use for input labels to tensor_forest.

  The incoming targets can be a dict where keys are the string names of the
  columns, which we turn into a single 1-D tensor for classification or
  2-D tensor for regression.

  Converts sparse tensors to dense ones.

  Args:
    labels: `Tensor` or `dict` of `Tensor` objects.

  Returns:
    A 2-D tensor for labels/outputs.
  """
  if isinstance(labels, dict):
    return math_ops.to_float(
        array_ops.concat(
            [
                sparse_ops.sparse_tensor_to_dense(
                    labels[k], default_value=-1) if isinstance(
                        labels, sparse_tensor.SparseTensor) else labels[k]
                for k in sorted(labels.keys())
            ],
            1))
  else:
    if isinstance(labels, sparse_tensor.SparseTensor):
      return math_ops.to_float(sparse_ops.sparse_tensor_to_dense(
          labels, default_value=-1))
    else:
      return math_ops.to_float(labels) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:data_ops.py

示例10: _to_dense_tensor

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def _to_dense_tensor(self, input_tensor):
    if isinstance(input_tensor, sparse_tensor_py.SparseTensor):
      default_value = (self.default_value[0] if self.default_value is not None
                       else 0)
      return sparse_ops.sparse_tensor_to_dense(
          input_tensor, default_value=default_value)
    return input_tensor 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:9,代碼來源:feature_column.py

示例11: _compare

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def _compare(self, sp_t, reduction_axes, ndims, keep_dims):
    densified = sparse_ops.sparse_tensor_to_dense(sp_t).eval()

    np_ans = densified
    if reduction_axes is None:
      np_ans = np.sum(np_ans, keepdims=keep_dims)
    else:
      if not isinstance(reduction_axes, list):  # Single scalar.
        reduction_axes = [reduction_axes]
      reduction_axes = np.array(reduction_axes).astype(np.int32)
      # Handles negative axes.
      reduction_axes = (reduction_axes + ndims) % ndims
      # Loop below depends on sorted.
      reduction_axes.sort()
      for ra in reduction_axes.ravel()[::-1]:
        np_ans = np.sum(np_ans, axis=ra, keepdims=keep_dims)

    with self.test_session():
      tf_dense_ans = sparse_ops.sparse_reduce_sum(sp_t, reduction_axes,
                                                  keep_dims)
      out_dense = tf_dense_ans.eval()

      tf_sparse_ans = sparse_ops.sparse_reduce_sum_sparse(sp_t, reduction_axes,
                                                          keep_dims)
      # Convert to dense for comparison purposes.
      out_sparse = sparse_ops.sparse_tensor_to_dense(tf_sparse_ans).eval()

    self.assertAllClose(np_ans, out_dense)
    self.assertAllClose(np_ans, out_sparse) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:31,代碼來源:sparse_ops_test.py

示例12: testTranspose

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def testTranspose(self):
    with self.test_session(use_gpu=False):
      np.random.seed(1618)
      shapes = [np.random.randint(1, 10, size=rank) for rank in range(1, 6)]
      for shape in shapes:
        for dtype in [np.int32, np.int64, np.float32, np.float64]:
          dn_input = np.random.randn(*shape).astype(dtype)
          rank = tf.rank(dn_input).eval()
          perm = np.random.choice(rank, rank, False)
          sp_input, unused_a_nnz = _sparsify(dn_input)
          sp_trans = tf.sparse_transpose(sp_input, perm=perm)
          dn_trans = tf.sparse_tensor_to_dense(sp_trans).eval()
          expected_trans = tf.transpose(dn_input, perm=perm).eval()
          self.assertAllEqual(dn_trans, expected_trans) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:16,代碼來源:sparse_ops_test.py

示例13: ParseLabelTensorOrDict

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def ParseLabelTensorOrDict(labels):
  """Return a tensor to use for input labels to tensor_forest.

  The incoming targets can be a dict where keys are the string names of the
  columns, which we turn into a single 1-D tensor for classification or
  2-D tensor for regression.

  Converts sparse tensors to dense ones.

  Args:
    labels: `Tensor` or `dict` of `Tensor` objects.

  Returns:
    A 2-D tensor for labels/outputs.
  """
  if isinstance(labels, dict):
    return math_ops.to_float(array_ops.concat(
        1, [sparse_ops.sparse_tensor_to_dense(labels[k], default_value=-1)
            if isinstance(labels, sparse_tensor.SparseTensor)
            else labels[k] for k in sorted(labels.keys())]))
  else:
    if isinstance(labels, sparse_tensor.SparseTensor):
      return math_ops.to_float(sparse_ops.sparse_tensor_to_dense(
          labels, default_value=-1))
    else:
      return math_ops.to_float(labels) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:28,代碼來源:data_ops.py

示例14: _transform_feature

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def _transform_feature(self, inputs):
    """Returns dense `Tensor` representing feature.

    Args:
      inputs: A `_LazyBuilder` object to access inputs.

    Returns:
      Transformed feature `Tensor`.

    Raises:
      ValueError: if input rank is not known at graph building time.
    """
    id_weight_pair = self.categorical_column._get_sparse_tensors(inputs)  # pylint: disable=protected-access
    id_tensor = id_weight_pair.id_tensor
    weight_tensor = id_weight_pair.weight_tensor

    # If the underlying column is weighted, return the input as a dense tensor.
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(
          sp_ids=id_tensor,
          sp_values=weight_tensor,
          vocab_size=int(self._variable_shape[-1]))
      # Remove (?, -1) index
      weighted_column = sparse_ops.sparse_slice(weighted_column, [0, 0],
                                                weighted_column.dense_shape)
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(
        id_tensor, default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor,
        depth=self._variable_shape[-1],
        on_value=1.0,
        off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(one_hot_id_tensor, axis=[-2]) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:42,代碼來源:feature_column.py

示例15: _to_dnn_input_layer

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_to_dense [as 別名]
def _to_dnn_input_layer(self,
                          transformed_input_tensor,
                          unused_weight_collections=None,
                          unused_trainable=False,
                          output_rank=2):
    """Returns a Tensor as an input to the first layer of neural network.

    Args:
      transformed_input_tensor: A tensor that has undergone the transformations
      in `insert_transformed_feature`. Rank should be >= `output_rank`.
      unused_weight_collections: Unused. One hot encodings are not variable.
      unused_trainable: Unused. One hot encodings are not trainable.
      output_rank: the desired rank of the output `Tensor`.

    Returns:
      A multihot Tensor to be fed into the first layer of neural network.

    Raises:
      ValueError: When using one_hot_column with weighted_sparse_column.
      This is not yet supported.
    """

    # Reshape ID column to `output_rank`.
    sparse_id_column = self.sparse_id_column.id_tensor(transformed_input_tensor)
    # pylint: disable=protected-access
    sparse_id_column = layers._inner_flatten(sparse_id_column, output_rank)

    weight_tensor = self.sparse_id_column.weight_tensor(
        transformed_input_tensor)
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(sp_ids=sparse_id_column,
                                                sp_values=weight_tensor,
                                                vocab_size=self.length)
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(sparse_id_column,
                                                        default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor, depth=self.length, on_value=1.0, off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(
        one_hot_id_tensor, reduction_indices=[output_rank - 1]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:48,代碼來源:feature_column.py


注:本文中的tensorflow.python.ops.sparse_ops.sparse_tensor_to_dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。