本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_tensor_dense_matmul方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_tensor_dense_matmul方法的具體用法?Python sparse_ops.sparse_tensor_dense_matmul怎麽用?Python sparse_ops.sparse_tensor_dense_matmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.sparse_ops
的用法示例。
在下文中一共展示了sparse_ops.sparse_tensor_dense_matmul方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testShapeInference
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_dense_matmul [as 別名]
def testShapeInference(self):
x = np.random.rand(10, 10)
x[np.abs(x) < 0.5] = 0 # Make it sparse
y = np.random.randn(10, 20)
x_indices = np.vstack(np.where(x)).astype(np.int64).T
x_values = x[np.where(x)]
x_shape = x.shape
x_st = tf.SparseTensor(x_indices, x_values, x_shape)
result = tf.sparse_tensor_dense_matmul(x_st, y)
self.assertEqual(result.get_shape(), (10, 20))
x_shape_unknown = tf.placeholder(dtype=tf.int64, shape=None)
x_st_shape_unknown = tf.SparseTensor(x_indices, x_values, x_shape_unknown)
result_left_shape_unknown = tf.sparse_tensor_dense_matmul(
x_st_shape_unknown, y)
self.assertEqual(
result_left_shape_unknown.get_shape().as_list(), [None, 20])
x_shape_inconsistent = [10, 15]
x_st_shape_inconsistent = tf.SparseTensor(
x_indices, x_values, x_shape_inconsistent)
with self.assertRaisesRegexp(ValueError, "Dimensions must be equal"):
tf.sparse_tensor_dense_matmul(x_st_shape_inconsistent, y)
# Tests setting one dimension to be a high value.
示例2: _sparse_tensor_dense_vs_dense_matmul_benchmark_sparse
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_dense_matmul [as 別名]
def _sparse_tensor_dense_vs_dense_matmul_benchmark_sparse(
x_ind, x_val, x_shape, y, adjoint_a, adjoint_b):
sp_x = tf.SparseTensor(indices=x_ind, values=x_val, shape=x_shape)
def body(t, prev):
with tf.control_dependencies([prev]):
return (t + 1,
sparse_ops.sparse_tensor_dense_matmul(
sp_x, y, adjoint_a=adjoint_a, adjoint_b=adjoint_b))
t0 = tf.constant(0)
v0 = tf.constant(0.0)
def _timeit(iterations, _):
(_, final) = tf.while_loop(
lambda t, _: t < iterations, body, (t0, v0),
parallel_iterations=1, back_prop=False)
return [final]
return _timeit
示例3: _testMatmul
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_dense_matmul [as 別名]
def _testMatmul(self, x, y, adjoint_a=False, adjoint_b=False):
x_mat = np.matrix(x)
if adjoint_a:
x_mat = x_mat.H
y_mat = np.matrix(y)
if adjoint_b:
y_mat = y_mat.H
np_ans = x_mat * y_mat
x_indices = np.vstack(np.where(x)).astype(np.int64).T
x_values = x[np.where(x)]
x_shape = x.shape
with self.test_session(use_gpu=True):
sp_x_value = tf.SparseTensorValue(
indices=x_indices, values=x_values, shape=x_shape)
tf_value_ans = sparse_ops.sparse_tensor_dense_matmul(
sp_x_value, y, adjoint_a=adjoint_a, adjoint_b=adjoint_b)
tf_tensor_ans = sparse_ops.sparse_tensor_dense_matmul(
tf.SparseTensor.from_value(sp_x_value), y, adjoint_a=adjoint_a,
adjoint_b=adjoint_b)
# Ensure that the RHS shape is known at least.
self.assertEqual(tf_value_ans.get_shape()[1], np_ans.shape[1])
self.assertEqual(tf_tensor_ans.get_shape()[1], np_ans.shape[1])
for out in (tf_value_ans.eval(), tf_tensor_ans.eval()):
if x.dtype == np.float32:
self.assertAllClose(np_ans, out, rtol=1e-4, atol=1e-4)
elif x.dtype == np.float64:
self.assertAllClose(np_ans, out, rtol=1e-6, atol=1e-6)
else:
self.assertAllClose(np_ans, out, rtol=1e-4, atol=1e-4)
示例4: _SparseTensorDenseMatMulGrad
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_tensor_dense_matmul [as 別名]
def _SparseTensorDenseMatMulGrad(op, grad):
"""Gradients for the dense tensor in the SparseTensorDenseMatMul op.
If either input is complex, no gradient is provided.
Args:
op: the SparseTensorDenseMatMul op
grad: the incoming gradient
Returns:
Gradient for each of the 4 input tensors:
(sparse_indices, sparse_values, sparse_shape, dense_tensor)
The gradients for indices and shape are None.
Raises:
TypeError: When the two operands don't have the same type.
"""
sp_t = sparse_tensor.SparseTensor(*op.inputs[:3])
adj_a = op.get_attr("adjoint_a")
adj_b = op.get_attr("adjoint_b")
a_type = sp_t.values.dtype.base_dtype
b_type = op.inputs[3].dtype.base_dtype
if a_type != b_type:
raise TypeError("SparseTensorDenseMatMul op received operands with "
"different types: ", a_type, " and ", b_type)
if a_type in (ops.dtypes.complex64, ops.dtypes.complex128):
raise NotImplementedError("SparseTensorDenseMatMul op does not support "
"complex gradients.")
# gradient w.r.t. dense
b_grad = sparse_ops.sparse_tensor_dense_matmul(sp_t, grad,
adjoint_a=not adj_a)
if adj_b:
b_grad = array_ops.transpose(b_grad)
# gradient w.r.t. sparse values
a_indices = op.inputs[0]
b = op.inputs[3]
rows = a_indices[:, 0]
cols = a_indices[:, 1]
# TODO(zongheng, ebrevdo): add conjugates in the right places when complex
# values are allowed.
# TODO(zongheng): these gather calls could potentially duplicate rows/cols in
# memory. If there is a need, we should look into implementing this more
# intelligently to avoid duplicating data.
parts_a = array_ops.gather(grad, rows if not adj_a else cols)
parts_b = array_ops.gather(b if not adj_b else array_ops.transpose(b),
cols if not adj_a else rows)
a_values_grad = math_ops.reduce_sum(parts_a * parts_b, reduction_indices=1)
# gradients w.r.t. (a_indices, a_values, a_shape, b)
return (None, a_values_grad, None, b_grad)