本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_reshape方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_reshape方法的具體用法?Python sparse_ops.sparse_reshape怎麽用?Python sparse_ops.sparse_reshape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.sparse_ops
的用法示例。
在下文中一共展示了sparse_ops.sparse_reshape方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: tensors_to_item
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def tensors_to_item(self, keys_to_tensors):
tensor = keys_to_tensors[self._tensor_key]
shape = self._shape
if self._shape_keys:
shape_dims = []
for k in self._shape_keys:
shape_dim = keys_to_tensors[k]
if isinstance(shape_dim, sparse_tensor.SparseTensor):
shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
shape_dims.append(shape_dim)
shape = array_ops.reshape(array_ops.stack(shape_dims), [-1])
if isinstance(tensor, sparse_tensor.SparseTensor):
if shape is not None:
tensor = sparse_ops.sparse_reshape(tensor, shape)
tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
else:
if shape is not None:
tensor = array_ops.reshape(tensor, shape)
return tensor
示例2: _move_sparse_tensor_in_context
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _move_sparse_tensor_in_context(context, sequences):
sparse_tensor_keys = [
k for k in sorted(sequences) if k.startswith(_SPARSE_CONTEXT_PREFIX_KEY)]
for key in sparse_tensor_keys:
new_key = key[len(_SPARSE_CONTEXT_PREFIX_KEY):]
sp_tensor = sequences[key]
# Take out time dimension.
sp_tensor = sparse_tensor.SparseTensor(
sp_tensor.indices, # with only 0s at column 1 representing time.
sp_tensor.values,
array_ops.concat(
[[sp_tensor.dense_shape[0]], # batch
[1], # time
sp_tensor.dense_shape[2:]], # SparseTensor shape prior to batching
0))
new_shape = array_ops.concat(
[[sp_tensor.dense_shape[0]], sp_tensor.dense_shape[2:]], 0)
context[new_key] = sparse_ops.sparse_reshape(sp_tensor, new_shape)
del sequences[key]
示例3: tensors_to_item
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def tensors_to_item(self, keys_to_tensors):
tensor = keys_to_tensors[self._tensor_key]
shape = self._shape
if self._shape_keys:
shape_dims = []
for k in self._shape_keys:
shape_dim = keys_to_tensors[k]
if isinstance(shape_dim, sparse_tensor.SparseTensor):
shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
shape_dims.append(shape_dim)
shape = array_ops.reshape(array_ops.pack(shape_dims), [-1])
if isinstance(tensor, sparse_tensor.SparseTensor):
if shape is not None:
tensor = sparse_ops.sparse_reshape(tensor, shape)
tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
else:
if shape is not None:
tensor = array_ops.reshape(tensor, shape)
return tensor
示例4: _sparse_inner_flatten
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
"""Helper function for `inner_flatten`."""
inputs_rank = inputs.dense_shape.get_shape().as_list()[0]
if inputs_rank < new_rank:
raise ValueError(
'Inputs has rank less than new_rank. {} must have rank at least'
' {}. Received rank {}, shape {}'.format(inputs, new_rank, inputs_rank,
inputs.get_shape()))
outer_dimensions = inputs.dense_shape[:new_rank - 1]
inner_dimensions = inputs.dense_shape[new_rank - 1:]
new_shape = array_ops.concat(
(outer_dimensions, [math_ops.reduce_prod(inner_dimensions)]), 0)
flattened = sparse_ops.sparse_reshape(inputs, new_shape)
return flattened
示例5: _create_categorical_column_weighted_sum
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _create_categorical_column_weighted_sum(
column, builder, units, sparse_combiner, weight_collections, trainable):
"""Create a weighted sum of a categorical column for linear_model."""
sparse_tensors = column._get_sparse_tensors( # pylint: disable=protected-access
builder,
weight_collections=weight_collections,
trainable=trainable)
id_tensor = sparse_ops.sparse_reshape(sparse_tensors.id_tensor, [
array_ops.shape(sparse_tensors.id_tensor)[0], -1
])
weight_tensor = sparse_tensors.weight_tensor
if weight_tensor is not None:
weight_tensor = sparse_ops.sparse_reshape(
weight_tensor, [array_ops.shape(weight_tensor)[0], -1])
weight = variable_scope.get_variable(
name='weights',
shape=(column._num_buckets, units), # pylint: disable=protected-access
initializer=init_ops.zeros_initializer(),
trainable=trainable,
collections=weight_collections)
return _safe_embedding_lookup_sparse(
weight,
id_tensor,
sparse_weights=weight_tensor,
combiner=sparse_combiner,
name='weighted_sum')
示例6: _sparse_inner_flatten
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
"""Helper function for `inner_flatten`."""
inputs_rank = inputs.dense_shape.get_shape().as_list()[0]
if inputs_rank < new_rank:
raise ValueError(
'Inputs has rank less than new_rank. {} must have rank at least'
' {}. Received rank {}, shape {}'.format(inputs, new_rank, inputs_rank,
inputs.get_shape()))
outer_dimensions = inputs.dense_shape[:new_rank - 1]
inner_dimensions = inputs.dense_shape[new_rank - 1:]
new_shape = array_ops.concat((outer_dimensions,
[math_ops.reduce_prod(inner_dimensions)]), 0)
flattened = sparse_ops.sparse_reshape(inputs, new_shape)
return flattened
示例7: _sparse_inner_flatten
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
"""Helper function for `inner_flatten`."""
outer_dimensions = inputs.dense_shape[:new_rank - 1]
inner_dimensions = inputs.dense_shape[new_rank - 1:]
new_shape = array_ops.concat((outer_dimensions,
[math_ops.reduce_prod(inner_dimensions)]), 0)
flattened = sparse_ops.sparse_reshape(inputs, new_shape)
return flattened
示例8: _sparse_inner_flatten
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
"""Helper function for `inner_flatten`."""
outer_dimensions = inputs.shape[:new_rank - 1]
inner_dimensions = inputs.shape[new_rank - 1:]
new_shape = array_ops.concat(0, (outer_dimensions,
[math_ops.reduce_prod(inner_dimensions)]))
flattened = sparse_ops.sparse_reshape(inputs, new_shape)
return flattened
示例9: _maybe_expand_labels
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _maybe_expand_labels(labels, predictions):
"""If necessary, expand `labels` along last dimension to match `predictions`.
Args:
labels: `Tensor` or `SparseTensor` with shape
[D1, ... DN, num_labels] or [D1, ... DN]. The latter implies
num_labels=1, in which case the result is an expanded `labels` with shape
[D1, ... DN, 1].
predictions: `Tensor` with shape [D1, ... DN, num_classes].
Returns:
`labels` with the same rank as `predictions`.
Raises:
ValueError: if `labels` has invalid shape.
"""
with ops.name_scope(None, 'expand_labels', (labels, predictions)) as scope:
labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)
# If sparse, expand sparse shape.
if isinstance(labels, sparse_tensor.SparseTensor):
return control_flow_ops.cond(
math_ops.equal(
array_ops.rank(predictions),
array_ops.size(labels.dense_shape) + 1),
lambda: sparse_ops.sparse_reshape( # pylint: disable=g-long-lambda
labels,
shape=array_ops.concat((labels.dense_shape, (1,)), 0),
name=scope),
lambda: labels)
# Otherwise, try to use static shape.
labels_rank = labels.get_shape().ndims
if labels_rank is not None:
predictions_rank = predictions.get_shape().ndims
if predictions_rank is not None:
if predictions_rank == labels_rank:
return labels
if predictions_rank == labels_rank + 1:
return array_ops.expand_dims(labels, -1, name=scope)
raise ValueError(
'Unexpected labels shape %s for predictions shape %s.' % (
labels.get_shape(), predictions.get_shape()))
# Otherwise, use dynamic shape.
return control_flow_ops.cond(
math_ops.equal(array_ops.rank(predictions), array_ops.rank(labels) + 1),
lambda: array_ops.expand_dims(labels, -1, name=scope),
lambda: labels)
示例10: _expand_and_tile
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
Args:
tensor: Input `Tensor` or `SparseTensor`.
multiple: Integer, number of times to tile.
dim: Integer, dimension along which to tile.
name: Name of operation.
Returns:
`Tensor` result of expanding and tiling `tensor`.
Raises:
ValueError: if `multiple` is less than 1, or `dim` is not in
`[-rank(tensor), rank(tensor)]`.
"""
if multiple < 1:
raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor)
if isinstance(tensor, sparse_tensor.SparseTensor):
if dim < 0:
expand_dims = array_ops.reshape(
array_ops.size(tensor.dense_shape) + dim, [1])
else:
expand_dims = [dim]
expanded_shape = array_ops.concat(
(array_ops.slice(tensor.dense_shape, [0], expand_dims), [1],
array_ops.slice(tensor.dense_shape, expand_dims, [-1])),
0,
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
(ones[:dim], (multiple,), ones[dim:]), 0, name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)
示例11: _get_raw_feature_as_tensor
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _get_raw_feature_as_tensor(self, key):
"""Gets the raw_feature (keyed by `key`) as `tensor`.
The raw feature is converted to (sparse) tensor and maybe expand dim.
For both `Tensor` and `SparseTensor`, the rank will be expanded (to 2) if
the rank is 1. This supports dynamic rank also. For rank 0 raw feature, will
error out as it is not supported.
Args:
key: A `str` key to access the raw feature.
Returns:
A `Tensor` or `SparseTensor`.
Raises:
ValueError: if the raw feature has rank 0.
"""
raw_feature = self._features[key]
feature_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
raw_feature)
def expand_dims(input_tensor):
# Input_tensor must have rank 1.
if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
return sparse_ops.sparse_reshape(
input_tensor, [array_ops.shape(input_tensor)[0], -1])
else:
return array_ops.expand_dims(input_tensor, -1)
rank = feature_tensor.get_shape().ndims
if rank is not None:
if rank == 0:
raise ValueError(
'Feature (key: {}) cannot have rank 0. Give: {}'.format(
key, feature_tensor))
return feature_tensor if rank != 1 else expand_dims(feature_tensor)
# Handle dynamic rank.
with ops.control_dependencies([
check_ops.assert_positive(
array_ops.rank(feature_tensor),
message='Feature (key: {}) cannot have rank 0. Given: {}'.format(
key, feature_tensor))]):
return control_flow_ops.cond(
math_ops.equal(1, array_ops.rank(feature_tensor)),
lambda: expand_dims(feature_tensor),
lambda: feature_tensor)
# TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py
示例12: _maybe_reshape_input_tensor
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _maybe_reshape_input_tensor(tensor, column_name, output_rank):
"""Reshape the input tensor by the following rule.
1. If `output_rank > input_rank + 1`, raise a `ValueError`.
2. If `output_rank == input_rank + 1`, expand the tensor by one dimension.
3. If `output_rank == input_rank`, do nothing.
4. If `output_rank < input_rank`, flatten the inner dimensions of the tensor.
Args:
tensor: A Tensor or SparseTensor to be reshaped.
column_name: A string name of the feature column for the tensor.
output_rank: the desired rank of the tensor.
Returns:
A reshaped Tensor or SparseTensor.
Raises:
ValueError: if `output_rank > input_rank + 1` for the input tensor.
"""
input_rank = tensor.get_shape().ndims
if input_rank is None and isinstance(tensor, sparse_tensor_py.SparseTensor):
# Try to get the rank of a sparse tensor by its dense_shape's shape.
input_rank = tensor.dense_shape.get_shape().as_list()[0]
if input_rank is None:
raise ValueError('Error while processing column {}. Rank of input Tensor '
'can not be None.'.format(column_name))
if output_rank > input_rank + 1:
raise ValueError('Error while processing column {}. Rank of input Tensor '
'({}) should be the same as output_rank ({}). For '
'example, sequence data should typically be 3 '
'dimensional (rank 3) while non-sequence data is '
'typically 2 dimensional (rank 2).'.format(
column_name, input_rank, output_rank))
elif output_rank == input_rank + 1:
# Expand the tensor's shape by 1 dimension.
if isinstance(tensor, sparse_tensor_py.SparseTensor):
output_shape = array_ops.concat([tensor.dense_shape, [1]], 0)
return sparse_ops.sparse_reshape(tensor, output_shape)
else:
reshaped = array_ops.expand_dims(tensor, -1)
# Try to calculate the new shape.
static_shape = tensor.get_shape()
if static_shape is not None and static_shape.dims is not None:
reshaped.set_shape(static_shape.as_list() + [1])
return reshaped
elif output_rank < input_rank:
return layers._inner_flatten(tensor, output_rank) # pylint: disable=protected-access
else:
return tensor
示例13: expand_and_tile
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
Args:
tensor: Input `Tensor` or `SparseTensor`.
multiple: Integer, number of times to tile.
dim: Integer, dimension along which to tile.
name: Name of operation.
Returns:
`Tensor` result of expanding and tiling `tensor`.
Raises:
ValueError: if `multiple` is less than 1, or `dim` is not in
`[-rank(tensor), rank(tensor)]`.
"""
if multiple < 1:
raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
if isinstance(tensor, sparse_tensor.SparseTensorValue):
tensor = sparse_tensor.SparseTensor.from_value(tensor)
if isinstance(tensor, sparse_tensor.SparseTensor):
if dim < 0:
expand_dims = array_ops.reshape(
array_ops.size(tensor.dense_shape) + dim, [1])
else:
expand_dims = [dim]
expanded_shape = array_ops.concat(
(array_ops.strided_slice(tensor.dense_shape, [0], expand_dims), [1],
array_ops.strided_slice(
tensor.dense_shape, expand_dims, [-1], end_mask=1 << 0)),
0,
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
(ones[:dim], (multiple,), ones[dim:]), 0, name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)
示例14: expand_and_tile
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
Args:
tensor: Input `Tensor` or `SparseTensor`.
multiple: Integer, number of times to tile.
dim: Integer, dimension along which to tile.
name: Name of operation.
Returns:
`Tensor` result of expanding and tiling `tensor`.
Raises:
ValueError: if `multiple` is less than 1, or `dim` is not in
`[-rank(tensor), rank(tensor)]`.
"""
if multiple < 1:
raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
if isinstance(tensor, sparse_tensor.SparseTensorValue):
tensor = sparse_tensor.SparseTensor.from_value(tensor)
if isinstance(tensor, sparse_tensor.SparseTensor):
if dim < 0:
expand_dims = array_ops.reshape(
array_ops.size(tensor.shape) + dim, [1])
else:
expand_dims = [dim]
expanded_shape = array_ops.concat(
0, (array_ops.slice(tensor.shape, [0], expand_dims), [1],
array_ops.slice(tensor.shape, expand_dims, [-1])),
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
0, (ones[:dim], (multiple,), ones[dim:]), name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)