當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse_ops.sparse_reshape方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_reshape方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_reshape方法的具體用法?Python sparse_ops.sparse_reshape怎麽用?Python sparse_ops.sparse_reshape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.sparse_ops的用法示例。


在下文中一共展示了sparse_ops.sparse_reshape方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def tensors_to_item(self, keys_to_tensors):
    tensor = keys_to_tensors[self._tensor_key]
    shape = self._shape
    if self._shape_keys:
      shape_dims = []
      for k in self._shape_keys:
        shape_dim = keys_to_tensors[k]
        if isinstance(shape_dim, sparse_tensor.SparseTensor):
          shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
        shape_dims.append(shape_dim)
      shape = array_ops.reshape(array_ops.stack(shape_dims), [-1])
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if shape is not None:
        tensor = sparse_ops.sparse_reshape(tensor, shape)
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    else:
      if shape is not None:
        tensor = array_ops.reshape(tensor, shape)
    return tensor 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:tfexample_decoder.py

示例2: _move_sparse_tensor_in_context

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _move_sparse_tensor_in_context(context, sequences):
  sparse_tensor_keys = [
      k for k in sorted(sequences) if k.startswith(_SPARSE_CONTEXT_PREFIX_KEY)]
  for key in sparse_tensor_keys:
    new_key = key[len(_SPARSE_CONTEXT_PREFIX_KEY):]
    sp_tensor = sequences[key]
    # Take out time dimension.
    sp_tensor = sparse_tensor.SparseTensor(
        sp_tensor.indices,  # with only 0s at column 1 representing time.
        sp_tensor.values,
        array_ops.concat(
            [[sp_tensor.dense_shape[0]],  # batch
             [1],  # time
             sp_tensor.dense_shape[2:]],  # SparseTensor shape prior to batching
            0))
    new_shape = array_ops.concat(
        [[sp_tensor.dense_shape[0]], sp_tensor.dense_shape[2:]], 0)
    context[new_key] = sparse_ops.sparse_reshape(sp_tensor, new_shape)
    del sequences[key] 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:sequence_queueing_state_saver.py

示例3: tensors_to_item

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def tensors_to_item(self, keys_to_tensors):
    tensor = keys_to_tensors[self._tensor_key]
    shape = self._shape
    if self._shape_keys:
      shape_dims = []
      for k in self._shape_keys:
        shape_dim = keys_to_tensors[k]
        if isinstance(shape_dim, sparse_tensor.SparseTensor):
          shape_dim = sparse_ops.sparse_tensor_to_dense(shape_dim)
        shape_dims.append(shape_dim)
      shape = array_ops.reshape(array_ops.pack(shape_dims), [-1])
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if shape is not None:
        tensor = sparse_ops.sparse_reshape(tensor, shape)
      tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
    else:
      if shape is not None:
        tensor = array_ops.reshape(tensor, shape)
    return tensor 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:tfexample_decoder.py

示例4: _sparse_inner_flatten

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
  """Helper function for `inner_flatten`."""
  inputs_rank = inputs.dense_shape.get_shape().as_list()[0]
  if inputs_rank < new_rank:
    raise ValueError(
        'Inputs has rank less than new_rank. {} must have rank at least'
        ' {}. Received rank {}, shape {}'.format(inputs, new_rank, inputs_rank,
                                                 inputs.get_shape()))

  outer_dimensions = inputs.dense_shape[:new_rank - 1]
  inner_dimensions = inputs.dense_shape[new_rank - 1:]
  new_shape = array_ops.concat(
      (outer_dimensions, [math_ops.reduce_prod(inner_dimensions)]), 0)
  flattened = sparse_ops.sparse_reshape(inputs, new_shape)
  return flattened 
開發者ID:taehoonlee,項目名稱:tensornets,代碼行數:17,代碼來源:layers.py

示例5: _create_categorical_column_weighted_sum

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _create_categorical_column_weighted_sum(
    column, builder, units, sparse_combiner, weight_collections, trainable):
  """Create a weighted sum of a categorical column for linear_model."""
  sparse_tensors = column._get_sparse_tensors(  # pylint: disable=protected-access
      builder,
      weight_collections=weight_collections,
      trainable=trainable)
  id_tensor = sparse_ops.sparse_reshape(sparse_tensors.id_tensor, [
      array_ops.shape(sparse_tensors.id_tensor)[0], -1
  ])
  weight_tensor = sparse_tensors.weight_tensor
  if weight_tensor is not None:
    weight_tensor = sparse_ops.sparse_reshape(
        weight_tensor, [array_ops.shape(weight_tensor)[0], -1])

  weight = variable_scope.get_variable(
      name='weights',
      shape=(column._num_buckets, units),  # pylint: disable=protected-access
      initializer=init_ops.zeros_initializer(),
      trainable=trainable,
      collections=weight_collections)
  return _safe_embedding_lookup_sparse(
      weight,
      id_tensor,
      sparse_weights=weight_tensor,
      combiner=sparse_combiner,
      name='weighted_sum') 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:29,代碼來源:feature_column.py

示例6: _sparse_inner_flatten

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
  """Helper function for `inner_flatten`."""
  inputs_rank = inputs.dense_shape.get_shape().as_list()[0]
  if inputs_rank < new_rank:
    raise ValueError(
        'Inputs has rank less than new_rank. {} must have rank at least'
        ' {}. Received rank {}, shape {}'.format(inputs, new_rank, inputs_rank,
                                                 inputs.get_shape()))

  outer_dimensions = inputs.dense_shape[:new_rank - 1]
  inner_dimensions = inputs.dense_shape[new_rank - 1:]
  new_shape = array_ops.concat((outer_dimensions,
                                [math_ops.reduce_prod(inner_dimensions)]), 0)
  flattened = sparse_ops.sparse_reshape(inputs, new_shape)
  return flattened 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:17,代碼來源:layers.py

示例7: _sparse_inner_flatten

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
  """Helper function for `inner_flatten`."""
  outer_dimensions = inputs.dense_shape[:new_rank - 1]
  inner_dimensions = inputs.dense_shape[new_rank - 1:]
  new_shape = array_ops.concat((outer_dimensions,
                                [math_ops.reduce_prod(inner_dimensions)]), 0)
  flattened = sparse_ops.sparse_reshape(inputs, new_shape)
  return flattened 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:10,代碼來源:layers.py

示例8: _sparse_inner_flatten

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _sparse_inner_flatten(inputs, new_rank):
  """Helper function for `inner_flatten`."""
  outer_dimensions = inputs.shape[:new_rank - 1]
  inner_dimensions = inputs.shape[new_rank - 1:]
  new_shape = array_ops.concat(0, (outer_dimensions,
                                   [math_ops.reduce_prod(inner_dimensions)]))
  flattened = sparse_ops.sparse_reshape(inputs, new_shape)
  return flattened 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:layers.py

示例9: _maybe_expand_labels

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _maybe_expand_labels(labels, predictions):
  """If necessary, expand `labels` along last dimension to match `predictions`.

  Args:
    labels: `Tensor` or `SparseTensor` with shape
      [D1, ... DN, num_labels] or [D1, ... DN]. The latter implies
      num_labels=1, in which case the result is an expanded `labels` with shape
      [D1, ... DN, 1].
    predictions: `Tensor` with shape [D1, ... DN, num_classes].

  Returns:
    `labels` with the same rank as `predictions`.

  Raises:
    ValueError: if `labels` has invalid shape.
  """
  with ops.name_scope(None, 'expand_labels', (labels, predictions)) as scope:
    labels = sparse_tensor.convert_to_tensor_or_sparse_tensor(labels)

    # If sparse, expand sparse shape.
    if isinstance(labels, sparse_tensor.SparseTensor):
      return control_flow_ops.cond(
          math_ops.equal(
              array_ops.rank(predictions),
              array_ops.size(labels.dense_shape) + 1),
          lambda: sparse_ops.sparse_reshape(  # pylint: disable=g-long-lambda
              labels,
              shape=array_ops.concat((labels.dense_shape, (1,)), 0),
              name=scope),
          lambda: labels)

    # Otherwise, try to use static shape.
    labels_rank = labels.get_shape().ndims
    if labels_rank is not None:
      predictions_rank = predictions.get_shape().ndims
      if predictions_rank is not None:
        if predictions_rank == labels_rank:
          return labels
        if predictions_rank == labels_rank + 1:
          return array_ops.expand_dims(labels, -1, name=scope)
        raise ValueError(
            'Unexpected labels shape %s for predictions shape %s.' % (
                labels.get_shape(), predictions.get_shape()))

    # Otherwise, use dynamic shape.
    return control_flow_ops.cond(
        math_ops.equal(array_ops.rank(predictions), array_ops.rank(labels) + 1),
        lambda: array_ops.expand_dims(labels, -1, name=scope),
        lambda: labels) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:51,代碼來源:metrics_impl.py

示例10: _expand_and_tile

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _expand_and_tile(tensor, multiple, dim=0, name=None):
  """Slice `tensor` shape in 2, then tile along the sliced dimension.

  A new dimension is inserted in shape of `tensor` before `dim`, then values are
  tiled `multiple` times along the new dimension.

  Args:
    tensor: Input `Tensor` or `SparseTensor`.
    multiple: Integer, number of times to tile.
    dim: Integer, dimension along which to tile.
    name: Name of operation.

  Returns:
    `Tensor` result of expanding and tiling `tensor`.

  Raises:
    ValueError: if `multiple` is less than 1, or `dim` is not in
    `[-rank(tensor), rank(tensor)]`.
  """
  if multiple < 1:
    raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
  with ops.name_scope(
      name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
    # Sparse.
    tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor)
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if dim < 0:
        expand_dims = array_ops.reshape(
            array_ops.size(tensor.dense_shape) + dim, [1])
      else:
        expand_dims = [dim]
      expanded_shape = array_ops.concat(
          (array_ops.slice(tensor.dense_shape, [0], expand_dims), [1],
           array_ops.slice(tensor.dense_shape, expand_dims, [-1])),
          0,
          name='expanded_shape')
      expanded = sparse_ops.sparse_reshape(
          tensor, shape=expanded_shape, name='expand')
      if multiple == 1:
        return expanded
      return sparse_ops.sparse_concat(
          dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)

    # Dense.
    expanded = array_ops.expand_dims(
        tensor, dim if (dim >= 0) else (dim - 1), name='expand')
    if multiple == 1:
      return expanded
    ones = array_ops.ones_like(array_ops.shape(tensor))
    tile_multiples = array_ops.concat(
        (ones[:dim], (multiple,), ones[dim:]), 0, name='multiples')
    return array_ops.tile(expanded, tile_multiples, name=scope) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:54,代碼來源:metrics_impl.py

示例11: _get_raw_feature_as_tensor

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _get_raw_feature_as_tensor(self, key):
    """Gets the raw_feature (keyed by `key`) as `tensor`.

    The raw feature is converted to (sparse) tensor and maybe expand dim.

    For both `Tensor` and `SparseTensor`, the rank will be expanded (to 2) if
    the rank is 1. This supports dynamic rank also. For rank 0 raw feature, will
    error out as it is not supported.

    Args:
      key: A `str` key to access the raw feature.

    Returns:
      A `Tensor` or `SparseTensor`.

    Raises:
      ValueError: if the raw feature has rank 0.
    """
    raw_feature = self._features[key]
    feature_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
        raw_feature)

    def expand_dims(input_tensor):
      # Input_tensor must have rank 1.
      if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
        return sparse_ops.sparse_reshape(
            input_tensor, [array_ops.shape(input_tensor)[0], -1])
      else:
        return array_ops.expand_dims(input_tensor, -1)

    rank = feature_tensor.get_shape().ndims
    if rank is not None:
      if rank == 0:
        raise ValueError(
            'Feature (key: {}) cannot have rank 0. Give: {}'.format(
                key, feature_tensor))
      return feature_tensor if rank != 1 else expand_dims(feature_tensor)

    # Handle dynamic rank.
    with ops.control_dependencies([
        check_ops.assert_positive(
            array_ops.rank(feature_tensor),
            message='Feature (key: {}) cannot have rank 0. Given: {}'.format(
                key, feature_tensor))]):
      return control_flow_ops.cond(
          math_ops.equal(1, array_ops.rank(feature_tensor)),
          lambda: expand_dims(feature_tensor),
          lambda: feature_tensor)


# TODO(ptucker): Move to third_party/tensorflow/python/ops/sparse_ops.py 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:53,代碼來源:feature_column.py

示例12: _maybe_reshape_input_tensor

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def _maybe_reshape_input_tensor(tensor, column_name, output_rank):
  """Reshape the input tensor by the following rule.

  1. If `output_rank > input_rank + 1`, raise a `ValueError`.
  2. If `output_rank == input_rank + 1`, expand the tensor by one dimension.
  3. If `output_rank == input_rank`, do nothing.
  4. If `output_rank < input_rank`, flatten the inner dimensions of the tensor.

  Args:
    tensor: A Tensor or SparseTensor to be reshaped.
    column_name: A string name of the feature column for the tensor.
    output_rank: the desired rank of the tensor.
  Returns:
    A reshaped Tensor or SparseTensor.
  Raises:
    ValueError: if `output_rank > input_rank + 1` for the input tensor.
  """
  input_rank = tensor.get_shape().ndims

  if input_rank is None and isinstance(tensor, sparse_tensor_py.SparseTensor):
    # Try to get the rank of a sparse tensor by its dense_shape's shape.
    input_rank = tensor.dense_shape.get_shape().as_list()[0]

  if input_rank is None:
    raise ValueError('Error while processing column {}. Rank of input Tensor '
                     'can not be None.'.format(column_name))

  if output_rank > input_rank + 1:
    raise ValueError('Error while processing column {}. Rank of input Tensor '
                     '({}) should be the same as output_rank ({}). For '
                     'example, sequence data should typically be 3 '
                     'dimensional (rank 3) while non-sequence data is '
                     'typically 2 dimensional (rank 2).'.format(
                         column_name, input_rank, output_rank))
  elif output_rank == input_rank + 1:
    # Expand the tensor's shape by 1 dimension.
    if isinstance(tensor, sparse_tensor_py.SparseTensor):
      output_shape = array_ops.concat([tensor.dense_shape, [1]], 0)
      return sparse_ops.sparse_reshape(tensor, output_shape)
    else:
      reshaped = array_ops.expand_dims(tensor, -1)
      # Try to calculate the new shape.
      static_shape = tensor.get_shape()
      if static_shape is not None and static_shape.dims is not None:
        reshaped.set_shape(static_shape.as_list() + [1])
      return reshaped
  elif output_rank < input_rank:
    return layers._inner_flatten(tensor, output_rank)  # pylint: disable=protected-access
  else:
    return tensor 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:52,代碼來源:feature_column_ops.py

示例13: expand_and_tile

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def expand_and_tile(tensor, multiple, dim=0, name=None):
  """Slice `tensor` shape in 2, then tile along the sliced dimension.

  A new dimension is inserted in shape of `tensor` before `dim`, then values are
  tiled `multiple` times along the new dimension.

  Args:
    tensor: Input `Tensor` or `SparseTensor`.
    multiple: Integer, number of times to tile.
    dim: Integer, dimension along which to tile.
    name: Name of operation.

  Returns:
    `Tensor` result of expanding and tiling `tensor`.

  Raises:
    ValueError: if `multiple` is less than 1, or `dim` is not in
    `[-rank(tensor), rank(tensor)]`.
  """
  if multiple < 1:
    raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
  with ops.name_scope(
      name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
    # Sparse.
    if isinstance(tensor, sparse_tensor.SparseTensorValue):
      tensor = sparse_tensor.SparseTensor.from_value(tensor)
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if dim < 0:
        expand_dims = array_ops.reshape(
            array_ops.size(tensor.dense_shape) + dim, [1])
      else:
        expand_dims = [dim]
      expanded_shape = array_ops.concat(
          (array_ops.strided_slice(tensor.dense_shape, [0], expand_dims), [1],
           array_ops.strided_slice(
               tensor.dense_shape, expand_dims, [-1], end_mask=1 << 0)),
          0,
          name='expanded_shape')
      expanded = sparse_ops.sparse_reshape(
          tensor, shape=expanded_shape, name='expand')
      if multiple == 1:
        return expanded
      return sparse_ops.sparse_concat(
          dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)

    # Dense.
    expanded = array_ops.expand_dims(
        tensor, dim if (dim >= 0) else (dim - 1), name='expand')
    if multiple == 1:
      return expanded
    ones = array_ops.ones_like(array_ops.shape(tensor))
    tile_multiples = array_ops.concat(
        (ones[:dim], (multiple,), ones[dim:]), 0, name='multiples')
    return array_ops.tile(expanded, tile_multiples, name=scope) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:56,代碼來源:metric_ops.py

示例14: expand_and_tile

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reshape [as 別名]
def expand_and_tile(tensor, multiple, dim=0, name=None):
  """Slice `tensor` shape in 2, then tile along the sliced dimension.

  A new dimension is inserted in shape of `tensor` before `dim`, then values are
  tiled `multiple` times along the new dimension.

  Args:
    tensor: Input `Tensor` or `SparseTensor`.
    multiple: Integer, number of times to tile.
    dim: Integer, dimension along which to tile.
    name: Name of operation.

  Returns:
    `Tensor` result of expanding and tiling `tensor`.

  Raises:
    ValueError: if `multiple` is less than 1, or `dim` is not in
    `[-rank(tensor), rank(tensor)]`.
  """
  if multiple < 1:
    raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
  with ops.name_scope(
      name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
    # Sparse.
    if isinstance(tensor, sparse_tensor.SparseTensorValue):
      tensor = sparse_tensor.SparseTensor.from_value(tensor)
    if isinstance(tensor, sparse_tensor.SparseTensor):
      if dim < 0:
        expand_dims = array_ops.reshape(
            array_ops.size(tensor.shape) + dim, [1])
      else:
        expand_dims = [dim]
      expanded_shape = array_ops.concat(
          0, (array_ops.slice(tensor.shape, [0], expand_dims), [1],
              array_ops.slice(tensor.shape, expand_dims, [-1])),
          name='expanded_shape')
      expanded = sparse_ops.sparse_reshape(
          tensor, shape=expanded_shape, name='expand')
      if multiple == 1:
        return expanded
      return sparse_ops.sparse_concat(
          dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)

    # Dense.
    expanded = array_ops.expand_dims(
        tensor, dim if (dim >= 0) else (dim - 1), name='expand')
    if multiple == 1:
      return expanded
    ones = array_ops.ones_like(array_ops.shape(tensor))
    tile_multiples = array_ops.concat(
        0, (ones[:dim], (multiple,), ones[dim:]), name='multiples')
    return array_ops.tile(expanded, tile_multiples, name=scope) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:54,代碼來源:metric_ops.py


注:本文中的tensorflow.python.ops.sparse_ops.sparse_reshape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。