當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse_ops.sparse_reorder方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_reorder方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_reorder方法的具體用法?Python sparse_ops.sparse_reorder怎麽用?Python sparse_ops.sparse_reorder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.sparse_ops的用法示例。


在下文中一共展示了sparse_ops.sparse_reorder方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _SparseReorderGrad

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reorder [as 別名]
def _SparseReorderGrad(op, unused_output_indices_grad, output_values_grad):
  """Gradients for the SparseReorder op.

  Args:
    op: the SparseReorder op
    unused_output_indices_grad: the incoming gradients of the output indices
    output_values_grad: the incoming gradients of the output values

  Returns:
    Gradient for each of the 3 input tensors:
      (input_indices, input_values, input_shape)
    The gradients for input_indices and input_shape is None.
  """
  input_indices = op.inputs[0]
  input_shape = op.inputs[2]

  num_entries = array_ops.shape(input_indices)[0]
  entry_indices = math_ops.range(num_entries)
  sp_unordered = sparse_tensor.SparseTensor(
      input_indices, entry_indices, input_shape)
  sp_ordered = sparse_ops.sparse_reorder(sp_unordered)
  inverted_permutation = array_ops.invert_permutation(sp_ordered.values)

  return (None,
          array_ops.gather(output_values_grad, inverted_permutation),
          None) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:sparse_grad.py

示例2: _per_batch_set_op

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reorder [as 別名]
def _per_batch_set_op(set_op, x):
  """Computes a set operation on a single batch of prediction & labelled span.

  Args:
    set_op: A callable function which is a tf.sets operation.
    x: A tuple of (pred_begin, pred_end, pred_label, gold_begin, gold_end,
      gold_label) which are the prediction and gold labelled spans for a single
      batch.  Each element of the tuple is a 1-D Tensor. pred_* Tensors should
      have the same size, and gold_* as well, but pred_* and gold_* Tensors may
      have different sizes.

  Returns:
    Performs the sets operation and returns the number of results.
  """
  x = tuple(math_ops.cast(i, dtypes.int64) for i in x)
  pred_begin, pred_end, pred_label, gold_begin, gold_end, gold_label = x
  # Combine spans together so they can be compared as one atomic unit. For
  # example:
  # If pred_begin = [0, 3, 5], pred_end = [2, 4, 6]
  #    gold_begin = [0, 5], gold_end = [2, 7]
  # Then we combine the spans into:
  #    pred = [[0, 2], [3, 4], [5, 6]]
  #    gold = [[0, 2], [5, 7]]
  #
  # In the sets operation, we want [0, 2] to be treated as one atomic comparison
  # unit (both begin=0 and end=2 offsets must match). Conversely, partial
  # matches (like [5, 6] and [5, 7]) are not a match.
  #
  # This is done by constructing a SparseTensor (containing span begin, end,
  # label points) for predictions and labels.
  pred_begin = array_ops.expand_dims(pred_begin, 1)
  pred_end = array_ops.expand_dims(pred_end, 1)
  gold_begin = array_ops.expand_dims(gold_begin, 1)
  gold_end = array_ops.expand_dims(gold_end, 1)
  # Because the last dimension is ignored in comparisons for tf.sets operations,
  # we add an unused last dimension.
  unused_last_pred_dim = array_ops.zeros_like(pred_begin)
  unused_last_gold_dim = array_ops.zeros_like(gold_begin)
  pred_indices = array_ops.concat([pred_begin, pred_end, unused_last_pred_dim],
                                  1)
  gold_indices = array_ops.concat([gold_begin, gold_end, unused_last_gold_dim],
                                  1)

  # set_ops require the bounding shape to match. Find the bounding shape
  # with the max number
  max_shape = math_ops.reduce_max(
      array_ops.concat([pred_indices, gold_indices], 0), 0)
  max_shape = max_shape + array_ops.ones_like(max_shape)

  pred = sparse_tensor.SparseTensor(pred_indices, pred_label, max_shape)
  pred = sparse_ops.sparse_reorder(pred)
  gold = sparse_tensor.SparseTensor(gold_indices, gold_label, max_shape)
  gold = sparse_ops.sparse_reorder(gold)
  results = set_op(pred, gold).indices
  num_results = control_flow_ops.cond(
      array_ops.size(results) > 0,
      true_fn=lambda: array_ops.shape(results)[0],
      false_fn=lambda: constant_op.constant(0))
  return num_results 
開發者ID:tensorflow,項目名稱:text,代碼行數:61,代碼來源:span_metrics.py


注:本文中的tensorflow.python.ops.sparse_ops.sparse_reorder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。