本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_reduce_sum方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_reduce_sum方法的具體用法?Python sparse_ops.sparse_reduce_sum怎麽用?Python sparse_ops.sparse_reduce_sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.sparse_ops
的用法示例。
在下文中一共展示了sparse_ops.sparse_reduce_sum方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testGradient
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reduce_sum [as 別名]
def testGradient(self):
np.random.seed(8161)
test_dims = [(11, 1, 5, 7, 1), (2, 2)]
with self.test_session(use_gpu=False):
for dims in test_dims:
sp_t, nnz = _sparsify(np.random.randn(*dims))
# reduce random axes from 1D to N-D
for d in range(1, len(dims) + 1):
axes = np.random.choice(len(dims), size=d, replace=False).tolist()
reduced = sparse_ops.sparse_reduce_sum(sp_t, axes)
err = tf.test.compute_gradient_error(sp_t.values, (nnz,), reduced,
reduced.eval().shape)
self.assertLess(err, 1e-3)
# Tests for negative axes.
reduced = sparse_ops.sparse_reduce_sum(sp_t, -1)
err = tf.test.compute_gradient_error(sp_t.values, (nnz,), reduced,
reduced.eval().shape)
self.assertLess(err, 1e-3)
示例2: _SparseSoftmaxGrad
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reduce_sum [as 別名]
def _SparseSoftmaxGrad(op, grad):
"""Gradients for SparseSoftmax.
The calculation is the same as SoftmaxGrad:
grad_x = grad_softmax * softmax - sum(grad_softmax * softmax) * softmax
where we now only operate on the non-zero values present in the SparseTensors.
Args:
op: the SparseSoftmax op.
grad: the upstream gradient w.r.t. the non-zero SparseSoftmax output values.
Returns:
Gradients w.r.t. the input (sp_indices, sp_values, sp_shape).
"""
indices, shape = op.inputs[0], op.inputs[2]
out_vals = op.outputs[0]
sp_output = sparse_tensor.SparseTensor(indices, out_vals, shape)
sp_grad = sparse_tensor.SparseTensor(indices, grad, shape)
sp_product = sparse_tensor.SparseTensor(
indices, sp_output.values * sp_grad.values, shape)
# [..., B, 1], dense.
sum_reduced = -sparse_ops.sparse_reduce_sum(sp_product, [-1], keep_dims=True)
# sparse [..., B, C] + dense [..., B, 1] with broadcast; outputs sparse.
sp_sum = sparse_ops.sparse_dense_cwise_add(sp_grad, sum_reduced)
grad_x = sp_sum.values * sp_output.values
return [None, grad_x, None]
示例3: _build_multilabel_adjacency
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reduce_sum [as 別名]
def _build_multilabel_adjacency(sparse_labels):
"""Builds multilabel adjacency matrix.
As of March 14th, 2017, there's no op for the dot product between
two sparse tensors in TF. However, there is `sparse_minimum` op which is
equivalent to an AND op between two sparse boolean tensors.
This computes the dot product between two sparse boolean inputs.
Args:
sparse_labels: List of 1-D boolean sparse tensors.
Returns:
adjacency_matrix: 2-D dense `Tensor`.
"""
num_pairs = len(sparse_labels)
adjacency_matrix = array_ops.zeros([num_pairs, num_pairs])
for i in range(num_pairs):
for j in range(num_pairs):
sparse_dot_product = math_ops.cast(
sparse_ops.sparse_reduce_sum(sparse_ops.sparse_minimum(
sparse_labels[i], sparse_labels[j])),
dtypes.float32)
sparse_dot_product = array_ops.expand_dims(sparse_dot_product, 0)
sparse_dot_product = array_ops.expand_dims(sparse_dot_product, 1)
one_hot_matrix = array_ops.pad(sparse_dot_product,
[[i, num_pairs-i-1],
[j, num_pairs-j-1]], 'CONSTANT')
adjacency_matrix += one_hot_matrix
return adjacency_matrix
示例4: _build_multilabel_adjacency
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reduce_sum [as 別名]
def _build_multilabel_adjacency(sparse_labels):
"""Builds multilabel adjacency matrix.
As of March 14th, 2017, there's no op for the dot product between
two sparse tensors in TF. However, there is `sparse_minimum` op which is
equivalent to an AND op between two sparse boolean tensors.
This computes the dot product between two sparse boolean inputs.
Args:
sparse_labels: List of 1-D boolean sparse tensors.
Returns:
adjacency_matrix: 2-D dense `Tensor`.
"""
num_pairs = len(sparse_labels)
adjacency_matrix = array_ops.zeros([num_pairs, num_pairs])
for i in range(num_pairs):
for j in range(num_pairs):
sparse_dot_product = math_ops.to_float(
sparse_ops.sparse_reduce_sum(sparse_ops.sparse_minimum(
sparse_labels[i], sparse_labels[j])))
sparse_dot_product = array_ops.expand_dims(sparse_dot_product, 0)
sparse_dot_product = array_ops.expand_dims(sparse_dot_product, 1)
one_hot_matrix = array_ops.pad(sparse_dot_product,
[[i, num_pairs-i-1],
[j, num_pairs-j-1]], 'CONSTANT')
adjacency_matrix += one_hot_matrix
return adjacency_matrix
示例5: _compare
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reduce_sum [as 別名]
def _compare(self, sp_t, reduction_axes, ndims, keep_dims):
densified = sparse_ops.sparse_tensor_to_dense(sp_t).eval()
np_ans = densified
if reduction_axes is None:
np_ans = np.sum(np_ans, keepdims=keep_dims)
else:
if not isinstance(reduction_axes, list): # Single scalar.
reduction_axes = [reduction_axes]
reduction_axes = np.array(reduction_axes).astype(np.int32)
# Handles negative axes.
reduction_axes = (reduction_axes + ndims) % ndims
# Loop below depends on sorted.
reduction_axes.sort()
for ra in reduction_axes.ravel()[::-1]:
np_ans = np.sum(np_ans, axis=ra, keepdims=keep_dims)
with self.test_session():
tf_dense_ans = sparse_ops.sparse_reduce_sum(sp_t, reduction_axes,
keep_dims)
out_dense = tf_dense_ans.eval()
tf_sparse_ans = sparse_ops.sparse_reduce_sum_sparse(sp_t, reduction_axes,
keep_dims)
# Convert to dense for comparison purposes.
out_sparse = sparse_ops.sparse_tensor_to_dense(tf_sparse_ans).eval()
self.assertAllClose(np_ans, out_dense)
self.assertAllClose(np_ans, out_sparse)
示例6: testInvalidAxes
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reduce_sum [as 別名]
def testInvalidAxes(self):
sp_t = tf.SparseTensor(self.ind, self.vals, self.shape)
with self.test_session(use_gpu=False):
with self.assertRaisesOpError("Invalid reduction dimension -3"):
sparse_ops.sparse_reduce_sum(sp_t, -3).eval()
with self.assertRaisesOpError("Invalid reduction dimension 2"):
sparse_ops.sparse_reduce_sum(sp_t, 2).eval()
示例7: calculate_loss
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_reduce_sum [as 別名]
def calculate_loss(input_mat, row_factors, col_factors, regularization=None,
w0=1., row_weights=None, col_weights=None):
"""Calculates the loss of a given factorization.
Using a non distributed method, different than the one implemented in the
WALS model. The weight of an observed entry (i, j) (i.e. such that
input_mat[i, j] is non zero) is (w0 + row_weights[i]col_weights[j]).
Args:
input_mat: The input matrix, a SparseTensor of rank 2.
row_factors: The row factors, a dense Tensor of rank 2.
col_factors: The col factors, a dense Tensor of rank 2.
regularization: the regularization coefficient, a scalar.
w0: the weight of unobserved entries. A scalar.
row_weights: A dense tensor of rank 1.
col_weights: A dense tensor of rank 1.
Returns:
The total loss.
"""
wr = (array_ops.expand_dims(row_weights, 1) if row_weights is not None
else constant_op.constant(1.))
wc = (array_ops.expand_dims(col_weights, 0) if col_weights is not None
else constant_op.constant(1.))
reg = (regularization if regularization is not None
else constant_op.constant(0.))
row_indices, col_indices = array_ops.split(input_mat.indices,
axis=1,
num_or_size_splits=2)
gathered_row_factors = array_ops.gather(row_factors, row_indices)
gathered_col_factors = array_ops.gather(col_factors, col_indices)
sp_approx_vals = array_ops.squeeze(math_ops.matmul(
gathered_row_factors, gathered_col_factors, adjoint_b=True))
sp_approx = sparse_tensor.SparseTensor(
indices=input_mat.indices,
values=sp_approx_vals,
dense_shape=input_mat.dense_shape)
sp_approx_sq = math_ops.square(sp_approx)
row_norm = math_ops.reduce_sum(math_ops.square(row_factors))
col_norm = math_ops.reduce_sum(math_ops.square(col_factors))
row_col_norm = math_ops.reduce_sum(math_ops.square(math_ops.matmul(
row_factors, col_factors, transpose_b=True)))
resid = sparse_ops.sparse_add(input_mat, sp_approx * (-1))
resid_sq = math_ops.square(resid)
loss = w0 * (
sparse_ops.sparse_reduce_sum(resid_sq) -
sparse_ops.sparse_reduce_sum(sp_approx_sq)
)
loss += (sparse_ops.sparse_reduce_sum(wr * (resid_sq * wc)) +
w0 * row_col_norm + reg * (row_norm + col_norm))
return loss.eval()