本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_merge方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_merge方法的具體用法?Python sparse_ops.sparse_merge怎麽用?Python sparse_ops.sparse_merge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.sparse_ops
的用法示例。
在下文中一共展示了sparse_ops.sparse_merge方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _construct_sparse_tensors_for_sparse_features
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _construct_sparse_tensors_for_sparse_features(features, tensor_dict):
"""Merges SparseTensors of indices and values of SparseFeatures.
Constructs new dict based on `tensor_dict`. For `SparseFeatures` in the values
of `features` expects their `index_key`s and `index_value`s to be present in
`tensor_dict` mapping to `SparseTensor`s. Constructs a single `SparseTensor`
from them, and adds it to the result with the key from `features`.
Copies other keys and values from `tensor_dict` with keys present in
`features`.
Args:
features: A `dict` mapping feature keys to `SparseFeature` values.
Values of other types will be ignored.
tensor_dict: A `dict` mapping feature keys to `Tensor` and `SparseTensor`
values. Expected to contain keys of the `SparseFeature`s' `index_key`s and
`value_key`s and mapping them to `SparseTensor`s.
Returns:
A `dict` mapping feature keys to `Tensor` and `SparseTensor` values. Similar
to `tensor_dict` except each `SparseFeature`s in `features` results in a
single `SparseTensor`.
"""
tensor_dict = dict(tensor_dict) # Do not modify argument passed in.
# Construct SparseTensors for SparseFeatures.
for key in sorted(features.keys()):
feature = features[key]
if isinstance(feature, SparseFeature):
if isinstance(feature.index_key, str):
sp_ids = tensor_dict[feature.index_key]
else:
sp_ids = [tensor_dict[index_key] for index_key in feature.index_key]
sp_values = tensor_dict[feature.value_key]
tensor_dict[key] = sparse_ops.sparse_merge(
sp_ids,
sp_values,
vocab_size=feature.size,
already_sorted=feature.already_sorted)
# Remove tensors from dictionary that were only used to construct
# SparseTensors for SparseFeature.
for key in set(tensor_dict) - set(features):
del tensor_dict[key]
return tensor_dict
示例2: _transform_feature
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _transform_feature(self, inputs):
"""Returns dense `Tensor` representing feature.
Args:
inputs: A `_LazyBuilder` object to access inputs.
Returns:
Transformed feature `Tensor`.
"""
id_weight_pair = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access
id_tensor = id_weight_pair.id_tensor
weight_tensor = id_weight_pair.weight_tensor
# If the underlying column is weighted, return the input as a dense tensor.
if weight_tensor is not None:
weighted_column = sparse_ops.sparse_merge(
sp_ids=id_tensor,
sp_values=weight_tensor,
vocab_size=self._variable_shape[-1])
return sparse_ops.sparse_tensor_to_dense(weighted_column)
dense_id_tensor = sparse_ops.sparse_tensor_to_dense(
id_tensor, default_value=-1)
# One hot must be float for tf.concat reasons since all other inputs to
# input_layer are float32.
one_hot_id_tensor = array_ops.one_hot(
dense_id_tensor,
depth=self._variable_shape[-1],
on_value=1.0,
off_value=0.0)
# Reduce to get a multi-hot per example.
return math_ops.reduce_sum(one_hot_id_tensor, axis=[1])
示例3: _construct_sparse_tensors_for_sparse_features
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _construct_sparse_tensors_for_sparse_features(features, tensor_dict):
"""Merges SparseTensors of indices and values of SparseFeatures.
Constructs new dict based on `tensor_dict`. For `SparseFeatures` in the values
of `features` expects their `index_key`s and `index_value`s to be present in
`tensor_dict` mapping to `SparseTensor`s. Constructs a single `SparseTensor`
from them, and adds it to the result with the key from `features`.
Copies other keys and values from `tensor_dict` with keys present in
`features`.
Args:
features: A `dict` mapping feature keys to `SparseFeature` values.
Values of other types will be ignored.
tensor_dict: A `dict` mapping feature keys to `Tensor` and `SparseTensor`
values. Expected to contain keys of the `SparseFeature`s' `index_key`s and
`value_key`s and mapping them to `SparseTensor`s.
Returns:
A `dict` mapping feature keys to `Tensor` and `SparseTensor` values. Similar
to `tensor_dict` except each `SparseFeature`s in `features` results in a
single `SparseTensor`.
"""
tensor_dict = dict(tensor_dict) # Do not modify argument passed in.
# Construct SparseTensors for SparseFeatures.
for key in sorted(features.keys()):
feature = features[key]
if isinstance(feature, SparseFeature):
sp_ids = tensor_dict[feature.index_key]
sp_values = tensor_dict[feature.value_key]
tensor_dict[key] = sparse_ops.sparse_merge(
sp_ids,
sp_values,
vocab_size=feature.size,
already_sorted=feature.already_sorted)
# Remove tensors from dictionary that were only used to construct
# SparseTensors for SparseFeature.
for key in set(tensor_dict) - set(features):
del tensor_dict[key]
return tensor_dict
示例4: testInt32AndFloat32
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt32AndFloat32(self):
vocab_size = 50
indices_v, values_v = self._SparseTensorValue_3x50(np.int32, np.float32)
with self.test_session(use_gpu=False) as sess:
for indices in (indices_v, tf.SparseTensor.from_value(indices_v)):
for values in (values_v, tf.SparseTensor.from_value(values_v)):
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)
output = sess.run(sp_output)
self._AssertResultsSorted(output, vocab_size)
示例5: testInt64AndFloat32
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt64AndFloat32(self):
vocab_size = 50
with self.test_session(use_gpu=False) as sess:
indices, values = self._SparseTensor_3x50(np.int64, np.float32)
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)
output = sess.run(sp_output)
self._AssertResultsSorted(output, vocab_size)
示例6: testInt64AndFloat64
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt64AndFloat64(self):
vocab_size = 50
with self.test_session(use_gpu=False) as sess:
indices, values = self._SparseTensor_3x50(np.int64, np.float64)
sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)
output = sess.run(sp_output)
self._AssertResultsSorted(output, vocab_size)
示例7: testInt32AndFloat32NonCanonicalOrder
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt32AndFloat32NonCanonicalOrder(self):
vocab_size = 50
with self.test_session(use_gpu=False) as sess:
indices, values = self._SparseTensor_3x50(np.int32, np.float32)
sp_output = sparse_ops.sparse_merge(
indices, values, vocab_size, already_sorted=True)
output = sess.run(sp_output)
self._AssertResultsNotSorted(output, vocab_size)
示例8: testInt64AndFloat32NonCanonicalOrder
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt64AndFloat32NonCanonicalOrder(self):
vocab_size = 50
with self.test_session(use_gpu=False) as sess:
indices, values = self._SparseTensor_3x50(np.int64, np.float32)
sp_output = sparse_ops.sparse_merge(
indices, values, vocab_size, already_sorted=True)
output = sess.run(sp_output)
self._AssertResultsNotSorted(output, vocab_size)
示例9: _transform_feature
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _transform_feature(self, inputs):
"""Returns dense `Tensor` representing feature.
Args:
inputs: A `_LazyBuilder` object to access inputs.
Returns:
Transformed feature `Tensor`.
Raises:
ValueError: if input rank is not known at graph building time.
"""
id_weight_pair = self.categorical_column._get_sparse_tensors(inputs) # pylint: disable=protected-access
id_tensor = id_weight_pair.id_tensor
weight_tensor = id_weight_pair.weight_tensor
# If the underlying column is weighted, return the input as a dense tensor.
if weight_tensor is not None:
weighted_column = sparse_ops.sparse_merge(
sp_ids=id_tensor,
sp_values=weight_tensor,
vocab_size=int(self._variable_shape[-1]))
# Remove (?, -1) index
weighted_column = sparse_ops.sparse_slice(weighted_column, [0, 0],
weighted_column.dense_shape)
return sparse_ops.sparse_tensor_to_dense(weighted_column)
dense_id_tensor = sparse_ops.sparse_tensor_to_dense(
id_tensor, default_value=-1)
# One hot must be float for tf.concat reasons since all other inputs to
# input_layer are float32.
one_hot_id_tensor = array_ops.one_hot(
dense_id_tensor,
depth=self._variable_shape[-1],
on_value=1.0,
off_value=0.0)
# Reduce to get a multi-hot per example.
return math_ops.reduce_sum(one_hot_id_tensor, axis=[-2])
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:42,代碼來源:feature_column.py
示例10: _to_dnn_input_layer
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _to_dnn_input_layer(self,
transformed_input_tensor,
unused_weight_collections=None,
unused_trainable=False,
output_rank=2):
"""Returns a Tensor as an input to the first layer of neural network.
Args:
transformed_input_tensor: A tensor that has undergone the transformations
in `insert_transformed_feature`. Rank should be >= `output_rank`.
unused_weight_collections: Unused. One hot encodings are not variable.
unused_trainable: Unused. One hot encodings are not trainable.
output_rank: the desired rank of the output `Tensor`.
Returns:
A multi-hot Tensor to be fed into the first layer of neural network.
Raises:
ValueError: When using one_hot_column with weighted_sparse_column.
This is not yet supported.
"""
# Reshape ID column to `output_rank`.
sparse_id_column = self.sparse_id_column.id_tensor(transformed_input_tensor)
# pylint: disable=protected-access
sparse_id_column = layers._inner_flatten(sparse_id_column, output_rank)
weight_tensor = self.sparse_id_column.weight_tensor(
transformed_input_tensor)
if weight_tensor is not None:
weighted_column = sparse_ops.sparse_merge(sp_ids=sparse_id_column,
sp_values=weight_tensor,
vocab_size=self.length)
return sparse_ops.sparse_tensor_to_dense(weighted_column)
dense_id_tensor = sparse_ops.sparse_tensor_to_dense(sparse_id_column,
default_value=-1)
# One hot must be float for tf.concat reasons since all other inputs to
# input_layer are float32.
one_hot_id_tensor = array_ops.one_hot(
dense_id_tensor, depth=self.length, on_value=1.0, off_value=0.0)
# Reduce to get a multi-hot per example.
return math_ops.reduce_sum(
one_hot_id_tensor, reduction_indices=[output_rank - 1])
示例11: _to_dnn_input_layer
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _to_dnn_input_layer(self,
transformed_input_tensor,
unused_weight_collections=None,
unused_trainable=False,
output_rank=2):
"""Returns a Tensor as an input to the first layer of neural network.
Args:
transformed_input_tensor: A tensor that has undergone the transformations
in `insert_transformed_feature`. Rank should be >= `output_rank`.
unused_weight_collections: Unused. One hot encodings are not variable.
unused_trainable: Unused. One hot encodings are not trainable.
output_rank: the desired rank of the output `Tensor`.
Returns:
A multihot Tensor to be fed into the first layer of neural network.
Raises:
ValueError: When using one_hot_column with weighted_sparse_column.
This is not yet supported.
"""
# Reshape ID column to `output_rank`.
sparse_id_column = self.sparse_id_column.id_tensor(transformed_input_tensor)
# pylint: disable=protected-access
sparse_id_column = layers._inner_flatten(sparse_id_column, output_rank)
weight_tensor = self.sparse_id_column.weight_tensor(
transformed_input_tensor)
if weight_tensor is not None:
weighted_column = sparse_ops.sparse_merge(sp_ids=sparse_id_column,
sp_values=weight_tensor,
vocab_size=self.length)
return sparse_ops.sparse_tensor_to_dense(weighted_column)
dense_id_tensor = sparse_ops.sparse_tensor_to_dense(sparse_id_column,
default_value=-1)
# One hot must be float for tf.concat reasons since all other inputs to
# input_layer are float32.
one_hot_id_tensor = array_ops.one_hot(
dense_id_tensor, depth=self.length, on_value=1.0, off_value=0.0)
# Reduce to get a multi-hot per example.
return math_ops.reduce_sum(
one_hot_id_tensor, reduction_indices=[output_rank - 1])