當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse_ops.sparse_merge方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_merge方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_merge方法的具體用法?Python sparse_ops.sparse_merge怎麽用?Python sparse_ops.sparse_merge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.sparse_ops的用法示例。


在下文中一共展示了sparse_ops.sparse_merge方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _construct_sparse_tensors_for_sparse_features

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _construct_sparse_tensors_for_sparse_features(features, tensor_dict):
  """Merges SparseTensors of indices and values of SparseFeatures.

  Constructs new dict based on `tensor_dict`. For `SparseFeatures` in the values
  of `features` expects their `index_key`s and `index_value`s to be present in
  `tensor_dict` mapping to `SparseTensor`s. Constructs a single `SparseTensor`
  from them, and adds it to the result with the key from `features`.
  Copies other keys and values from `tensor_dict` with keys present in
  `features`.

  Args:
    features: A `dict` mapping feature keys to `SparseFeature` values.
      Values of other types will be ignored.
    tensor_dict: A `dict` mapping feature keys to `Tensor` and `SparseTensor`
      values. Expected to contain keys of the `SparseFeature`s' `index_key`s and
      `value_key`s and mapping them to `SparseTensor`s.
  Returns:
    A `dict` mapping feature keys to `Tensor` and `SparseTensor` values. Similar
    to `tensor_dict` except each `SparseFeature`s in `features` results in a
    single `SparseTensor`.
  """
  tensor_dict = dict(tensor_dict)  # Do not modify argument passed in.
  # Construct SparseTensors for SparseFeatures.
  for key in sorted(features.keys()):
    feature = features[key]
    if isinstance(feature, SparseFeature):
      if isinstance(feature.index_key, str):
        sp_ids = tensor_dict[feature.index_key]
      else:
        sp_ids = [tensor_dict[index_key] for index_key in feature.index_key]
      sp_values = tensor_dict[feature.value_key]
      tensor_dict[key] = sparse_ops.sparse_merge(
          sp_ids,
          sp_values,
          vocab_size=feature.size,
          already_sorted=feature.already_sorted)
  # Remove tensors from dictionary that were only used to construct
  # SparseTensors for SparseFeature.
  for key in set(tensor_dict) - set(features):
    del tensor_dict[key]
  return tensor_dict 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:parsing_ops.py

示例2: _transform_feature

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _transform_feature(self, inputs):
    """Returns dense `Tensor` representing feature.

    Args:
      inputs: A `_LazyBuilder` object to access inputs.

    Returns:
      Transformed feature `Tensor`.
    """
    id_weight_pair = self.categorical_column._get_sparse_tensors(inputs)  # pylint: disable=protected-access
    id_tensor = id_weight_pair.id_tensor
    weight_tensor = id_weight_pair.weight_tensor

    # If the underlying column is weighted, return the input as a dense tensor.
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(
          sp_ids=id_tensor,
          sp_values=weight_tensor,
          vocab_size=self._variable_shape[-1])
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(
        id_tensor, default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor,
        depth=self._variable_shape[-1],
        on_value=1.0,
        off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(one_hot_id_tensor, axis=[1]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:36,代碼來源:feature_column.py

示例3: _construct_sparse_tensors_for_sparse_features

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _construct_sparse_tensors_for_sparse_features(features, tensor_dict):
  """Merges SparseTensors of indices and values of SparseFeatures.

  Constructs new dict based on `tensor_dict`. For `SparseFeatures` in the values
  of `features` expects their `index_key`s and `index_value`s to be present in
  `tensor_dict` mapping to `SparseTensor`s. Constructs a single `SparseTensor`
  from them, and adds it to the result with the key from `features`.
  Copies other keys and values from `tensor_dict` with keys present in
  `features`.

  Args:
    features: A `dict` mapping feature keys to `SparseFeature` values.
      Values of other types will be ignored.
    tensor_dict: A `dict` mapping feature keys to `Tensor` and `SparseTensor`
      values. Expected to contain keys of the `SparseFeature`s' `index_key`s and
      `value_key`s and mapping them to `SparseTensor`s.
  Returns:
    A `dict` mapping feature keys to `Tensor` and `SparseTensor` values. Similar
    to `tensor_dict` except each `SparseFeature`s in `features` results in a
    single `SparseTensor`.
  """
  tensor_dict = dict(tensor_dict)  # Do not modify argument passed in.
  # Construct SparseTensors for SparseFeatures.
  for key in sorted(features.keys()):
    feature = features[key]
    if isinstance(feature, SparseFeature):
      sp_ids = tensor_dict[feature.index_key]
      sp_values = tensor_dict[feature.value_key]
      tensor_dict[key] = sparse_ops.sparse_merge(
          sp_ids,
          sp_values,
          vocab_size=feature.size,
          already_sorted=feature.already_sorted)
  # Remove tensors from dictionary that were only used to construct
  # SparseTensors for SparseFeature.
  for key in set(tensor_dict) - set(features):
    del tensor_dict[key]
  return tensor_dict 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:40,代碼來源:parsing_ops.py

示例4: testInt32AndFloat32

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt32AndFloat32(self):
    vocab_size = 50
    indices_v, values_v = self._SparseTensorValue_3x50(np.int32, np.float32)
    with self.test_session(use_gpu=False) as sess:
      for indices in (indices_v, tf.SparseTensor.from_value(indices_v)):
        for values in (values_v, tf.SparseTensor.from_value(values_v)):
          sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)

          output = sess.run(sp_output)
          self._AssertResultsSorted(output, vocab_size) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:sparse_ops_test.py

示例5: testInt64AndFloat32

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt64AndFloat32(self):
    vocab_size = 50
    with self.test_session(use_gpu=False) as sess:
      indices, values = self._SparseTensor_3x50(np.int64, np.float32)
      sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)

      output = sess.run(sp_output)
      self._AssertResultsSorted(output, vocab_size) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:sparse_ops_test.py

示例6: testInt64AndFloat64

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt64AndFloat64(self):
    vocab_size = 50
    with self.test_session(use_gpu=False) as sess:
      indices, values = self._SparseTensor_3x50(np.int64, np.float64)
      sp_output = sparse_ops.sparse_merge(indices, values, vocab_size)

      output = sess.run(sp_output)
      self._AssertResultsSorted(output, vocab_size) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:10,代碼來源:sparse_ops_test.py

示例7: testInt32AndFloat32NonCanonicalOrder

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt32AndFloat32NonCanonicalOrder(self):
    vocab_size = 50
    with self.test_session(use_gpu=False) as sess:
      indices, values = self._SparseTensor_3x50(np.int32, np.float32)
      sp_output = sparse_ops.sparse_merge(
          indices, values, vocab_size, already_sorted=True)

      output = sess.run(sp_output)
      self._AssertResultsNotSorted(output, vocab_size) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:sparse_ops_test.py

示例8: testInt64AndFloat32NonCanonicalOrder

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def testInt64AndFloat32NonCanonicalOrder(self):
    vocab_size = 50
    with self.test_session(use_gpu=False) as sess:
      indices, values = self._SparseTensor_3x50(np.int64, np.float32)
      sp_output = sparse_ops.sparse_merge(
          indices, values, vocab_size, already_sorted=True)

      output = sess.run(sp_output)
      self._AssertResultsNotSorted(output, vocab_size) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:11,代碼來源:sparse_ops_test.py

示例9: _transform_feature

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _transform_feature(self, inputs):
    """Returns dense `Tensor` representing feature.

    Args:
      inputs: A `_LazyBuilder` object to access inputs.

    Returns:
      Transformed feature `Tensor`.

    Raises:
      ValueError: if input rank is not known at graph building time.
    """
    id_weight_pair = self.categorical_column._get_sparse_tensors(inputs)  # pylint: disable=protected-access
    id_tensor = id_weight_pair.id_tensor
    weight_tensor = id_weight_pair.weight_tensor

    # If the underlying column is weighted, return the input as a dense tensor.
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(
          sp_ids=id_tensor,
          sp_values=weight_tensor,
          vocab_size=int(self._variable_shape[-1]))
      # Remove (?, -1) index
      weighted_column = sparse_ops.sparse_slice(weighted_column, [0, 0],
                                                weighted_column.dense_shape)
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(
        id_tensor, default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor,
        depth=self._variable_shape[-1],
        on_value=1.0,
        off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(one_hot_id_tensor, axis=[-2]) 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:42,代碼來源:feature_column.py

示例10: _to_dnn_input_layer

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _to_dnn_input_layer(self,
                          transformed_input_tensor,
                          unused_weight_collections=None,
                          unused_trainable=False,
                          output_rank=2):
    """Returns a Tensor as an input to the first layer of neural network.

    Args:
      transformed_input_tensor: A tensor that has undergone the transformations
      in `insert_transformed_feature`. Rank should be >= `output_rank`.
      unused_weight_collections: Unused. One hot encodings are not variable.
      unused_trainable: Unused. One hot encodings are not trainable.
      output_rank: the desired rank of the output `Tensor`.

    Returns:
      A multi-hot Tensor to be fed into the first layer of neural network.

    Raises:
      ValueError: When using one_hot_column with weighted_sparse_column.
      This is not yet supported.
    """

    # Reshape ID column to `output_rank`.
    sparse_id_column = self.sparse_id_column.id_tensor(transformed_input_tensor)
    # pylint: disable=protected-access
    sparse_id_column = layers._inner_flatten(sparse_id_column, output_rank)

    weight_tensor = self.sparse_id_column.weight_tensor(
        transformed_input_tensor)
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(sp_ids=sparse_id_column,
                                                sp_values=weight_tensor,
                                                vocab_size=self.length)
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(sparse_id_column,
                                                        default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor, depth=self.length, on_value=1.0, off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(
        one_hot_id_tensor, reduction_indices=[output_rank - 1]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:48,代碼來源:feature_column.py

示例11: _to_dnn_input_layer

# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_merge [as 別名]
def _to_dnn_input_layer(self,
                          transformed_input_tensor,
                          unused_weight_collections=None,
                          unused_trainable=False,
                          output_rank=2):
    """Returns a Tensor as an input to the first layer of neural network.

    Args:
      transformed_input_tensor: A tensor that has undergone the transformations
      in `insert_transformed_feature`. Rank should be >= `output_rank`.
      unused_weight_collections: Unused. One hot encodings are not variable.
      unused_trainable: Unused. One hot encodings are not trainable.
      output_rank: the desired rank of the output `Tensor`.

    Returns:
      A multihot Tensor to be fed into the first layer of neural network.

    Raises:
      ValueError: When using one_hot_column with weighted_sparse_column.
      This is not yet supported.
    """

    # Reshape ID column to `output_rank`.
    sparse_id_column = self.sparse_id_column.id_tensor(transformed_input_tensor)
    # pylint: disable=protected-access
    sparse_id_column = layers._inner_flatten(sparse_id_column, output_rank)

    weight_tensor = self.sparse_id_column.weight_tensor(
        transformed_input_tensor)
    if weight_tensor is not None:
      weighted_column = sparse_ops.sparse_merge(sp_ids=sparse_id_column,
                                                sp_values=weight_tensor,
                                                vocab_size=self.length)
      return sparse_ops.sparse_tensor_to_dense(weighted_column)

    dense_id_tensor = sparse_ops.sparse_tensor_to_dense(sparse_id_column,
                                                        default_value=-1)

    # One hot must be float for tf.concat reasons since all other inputs to
    # input_layer are float32.
    one_hot_id_tensor = array_ops.one_hot(
        dense_id_tensor, depth=self.length, on_value=1.0, off_value=0.0)

    # Reduce to get a multi-hot per example.
    return math_ops.reduce_sum(
        one_hot_id_tensor, reduction_indices=[output_rank - 1]) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:48,代碼來源:feature_column.py


注:本文中的tensorflow.python.ops.sparse_ops.sparse_merge方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。