本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_concat方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_concat方法的具體用法?Python sparse_ops.sparse_concat怎麽用?Python sparse_ops.sparse_concat使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.sparse_ops
的用法示例。
在下文中一共展示了sparse_ops.sparse_concat方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: concatenate
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def concatenate(tensors, axis=-1):
"""Concatenates a list of tensors alongside the specified axis.
Arguments:
tensors: list of tensors to concatenate.
axis: concatenation axis.
Returns:
A tensor.
"""
if axis < 0:
rank = ndim(tensors[0])
if rank:
axis %= rank
else:
axis = 0
if py_all([is_sparse(x) for x in tensors]):
return sparse_ops.sparse_concat(axis, tensors)
else:
return array_ops.concat([to_dense(x) for x in tensors], axis)
示例2: tensors_to_item
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def tensors_to_item(self, keys_to_tensors):
"""Maps the given dictionary of tensors to a concatenated list of bboxes.
Args:
keys_to_tensors: a mapping of TF-Example keys to parsed tensors.
Returns:
[time, num_boxes, 4] tensor of bounding box coordinates, in order
[y_min, x_min, y_max, x_max]. Whether the tensor is a SparseTensor
or a dense Tensor is determined by the return_dense parameter. Empty
positions in the sparse tensor are filled with -1.0 values.
"""
sides = []
for key in self._full_keys:
value = keys_to_tensors[key]
expanded_dims = array_ops.concat(
[math_ops.to_int64(array_ops.shape(value)),
constant_op.constant([1], dtype=dtypes.int64)], 0)
side = sparse_ops.sparse_reshape(value, expanded_dims)
sides.append(side)
bounding_boxes = sparse_ops.sparse_concat(2, sides)
if self._return_dense:
bounding_boxes = sparse_ops.sparse_tensor_to_dense(
bounding_boxes, default_value=self._default_value)
return bounding_boxes
示例3: _ParseSparse
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def _ParseSparse(data):
"""Concat sparse tensors together.
Args:
data: A dict of name -> Tensor.
Returns:
A single sparse tensor and a 1-D input spec Tensor.
Raises:
NotImplementedError: Combining dense and sparse tensors is not
supported.
ValueError: If data contains non-string Tensors.
"""
for k in sorted(data.keys()):
if not isinstance(data[k], sparse_tensor.SparseTensor):
raise NotImplementedError(
'Features should be either all sparse or all dense. Use a '
'feature engineering function to convert some of them.')
data_spec = [
constants.DATA_CATEGORICAL if data[data.keys()[0]].dtype == dtypes.string
else constants.DATA_FLOAT
]
return sparse_ops.sparse_concat(1, data.values()), data_spec
示例4: _expand_and_tile
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def _expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
Args:
tensor: Input `Tensor` or `SparseTensor`.
multiple: Integer, number of times to tile.
dim: Integer, dimension along which to tile.
name: Name of operation.
Returns:
`Tensor` result of expanding and tiling `tensor`.
Raises:
ValueError: if `multiple` is less than 1, or `dim` is not in
`[-rank(tensor), rank(tensor)]`.
"""
if multiple < 1:
raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
tensor = sparse_tensor.convert_to_tensor_or_sparse_tensor(tensor)
if isinstance(tensor, sparse_tensor.SparseTensor):
if dim < 0:
expand_dims = array_ops.reshape(
array_ops.size(tensor.dense_shape) + dim, [1])
else:
expand_dims = [dim]
expanded_shape = array_ops.concat(
(array_ops.slice(tensor.dense_shape, [0], expand_dims), [1],
array_ops.slice(tensor.dense_shape, expand_dims, [-1])),
0,
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
(ones[:dim], (multiple,), ones[dim:]), 0, name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)
示例5: _create_joint_embedding_lookup
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def _create_joint_embedding_lookup(columns_to_tensors,
embedding_lookup_arguments,
num_outputs,
trainable,
weight_collections):
"""Creates an embedding lookup for all columns sharing a single weight."""
for arg in embedding_lookup_arguments:
assert arg.weight_tensor is None, (
'Joint sums for weighted sparse columns are not supported. '
'Please use weighted_sum_from_feature_columns instead.')
assert arg.combiner == 'sum', (
'Combiners other than sum are not supported for joint sums. '
'Please use weighted_sum_from_feature_columns instead.')
assert len(embedding_lookup_arguments) >= 1, (
'At least one column must be in the model.')
prev_size = 0
sparse_tensors = []
for a in embedding_lookup_arguments:
t = a.input_tensor
values = t.values + prev_size
prev_size += a.vocab_size
sparse_tensors.append(
sparse_tensor_py.SparseTensor(t.indices,
values,
t.dense_shape))
sparse_tensor = sparse_ops.sparse_concat(1, sparse_tensors)
with variable_scope.variable_scope(
None, default_name='linear_weights', values=columns_to_tensors.values()):
variable = contrib_variables.model_variable(
name='weights',
shape=[prev_size, num_outputs],
dtype=dtypes.float32,
initializer=init_ops.zeros_initializer(),
trainable=trainable,
collections=weight_collections)
if fc._is_variable(variable): # pylint: disable=protected-access
variable = [variable]
else:
variable = variable._get_variable_list() # pylint: disable=protected-access
predictions = embedding_ops.safe_embedding_lookup_sparse(
variable,
sparse_tensor,
sparse_weights=None,
combiner='sum',
name='_weights')
return variable, predictions
示例6: expand_and_tile
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
Args:
tensor: Input `Tensor` or `SparseTensor`.
multiple: Integer, number of times to tile.
dim: Integer, dimension along which to tile.
name: Name of operation.
Returns:
`Tensor` result of expanding and tiling `tensor`.
Raises:
ValueError: if `multiple` is less than 1, or `dim` is not in
`[-rank(tensor), rank(tensor)]`.
"""
if multiple < 1:
raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
if isinstance(tensor, sparse_tensor.SparseTensorValue):
tensor = sparse_tensor.SparseTensor.from_value(tensor)
if isinstance(tensor, sparse_tensor.SparseTensor):
if dim < 0:
expand_dims = array_ops.reshape(
array_ops.size(tensor.dense_shape) + dim, [1])
else:
expand_dims = [dim]
expanded_shape = array_ops.concat(
(array_ops.strided_slice(tensor.dense_shape, [0], expand_dims), [1],
array_ops.strided_slice(
tensor.dense_shape, expand_dims, [-1], end_mask=1 << 0)),
0,
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
(ones[:dim], (multiple,), ones[dim:]), 0, name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)
示例7: _create_joint_embedding_lookup
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def _create_joint_embedding_lookup(columns_to_tensors,
embedding_lookup_arguments,
num_outputs,
trainable,
weight_collections):
"""Creates an embedding lookup for all columns sharing a single weight."""
for arg in embedding_lookup_arguments:
assert arg.weight_tensor is None, (
'Joint sums for weighted sparse columns are not supported. '
'Please use weighted_sum_from_feature_columns instead.')
assert arg.combiner == 'sum', (
'Combiners other than sum are not supported for joint sums. '
'Please use weighted_sum_from_feature_columns instead.')
assert len(embedding_lookup_arguments) >= 1, (
'At least one column must be in the model.')
prev_size = 0
sparse_tensors = []
for a in embedding_lookup_arguments:
t = a.input_tensor
values = t.values + prev_size
prev_size += a.vocab_size
sparse_tensors.append(
sparse_tensor_py.SparseTensor(t.indices,
values,
t.dense_shape))
sparse_tensor = sparse_ops.sparse_concat(1, sparse_tensors)
with variable_scope.variable_scope(
None, default_name='linear_weights', values=columns_to_tensors.values()):
variable = contrib_variables.model_variable(
name='weights',
shape=[prev_size, num_outputs],
dtype=dtypes.float32,
initializer=init_ops.zeros_initializer(),
trainable=trainable,
collections=weight_collections)
if isinstance(variable, variables.Variable):
variable = [variable]
else:
variable = variable._get_variable_list() # pylint: disable=protected-access
predictions = embedding_ops.safe_embedding_lookup_sparse(
variable,
sparse_tensor,
sparse_weights=None,
combiner='sum',
name='_weights')
return variable, predictions
示例8: expand_and_tile
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def expand_and_tile(tensor, multiple, dim=0, name=None):
"""Slice `tensor` shape in 2, then tile along the sliced dimension.
A new dimension is inserted in shape of `tensor` before `dim`, then values are
tiled `multiple` times along the new dimension.
Args:
tensor: Input `Tensor` or `SparseTensor`.
multiple: Integer, number of times to tile.
dim: Integer, dimension along which to tile.
name: Name of operation.
Returns:
`Tensor` result of expanding and tiling `tensor`.
Raises:
ValueError: if `multiple` is less than 1, or `dim` is not in
`[-rank(tensor), rank(tensor)]`.
"""
if multiple < 1:
raise ValueError('Invalid multiple %s, must be > 0.' % multiple)
with ops.name_scope(
name, 'expand_and_tile', (tensor, multiple, dim)) as scope:
# Sparse.
if isinstance(tensor, sparse_tensor.SparseTensorValue):
tensor = sparse_tensor.SparseTensor.from_value(tensor)
if isinstance(tensor, sparse_tensor.SparseTensor):
if dim < 0:
expand_dims = array_ops.reshape(
array_ops.size(tensor.shape) + dim, [1])
else:
expand_dims = [dim]
expanded_shape = array_ops.concat(
0, (array_ops.slice(tensor.shape, [0], expand_dims), [1],
array_ops.slice(tensor.shape, expand_dims, [-1])),
name='expanded_shape')
expanded = sparse_ops.sparse_reshape(
tensor, shape=expanded_shape, name='expand')
if multiple == 1:
return expanded
return sparse_ops.sparse_concat(
dim - 1 if dim < 0 else dim, [expanded] * multiple, name=scope)
# Dense.
expanded = array_ops.expand_dims(
tensor, dim if (dim >= 0) else (dim - 1), name='expand')
if multiple == 1:
return expanded
ones = array_ops.ones_like(array_ops.shape(tensor))
tile_multiples = array_ops.concat(
0, (ones[:dim], (multiple,), ones[dim:]), name='multiples')
return array_ops.tile(expanded, tile_multiples, name=scope)
示例9: _create_joint_embedding_lookup
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_concat [as 別名]
def _create_joint_embedding_lookup(columns_to_tensors,
embedding_lookup_arguments,
num_outputs,
trainable,
weight_collections):
"""Creates an embedding lookup for all columns sharing a single weight."""
for arg in embedding_lookup_arguments:
assert arg.weight_tensor is None, (
'Joint sums for weighted sparse columns are not supported. '
'Please use weighted_sum_from_feature_columns instead.')
assert arg.combiner == 'sum', (
'Combiners other than sum are not supported for joint sums. '
'Please use weighted_sum_from_feature_columns instead.')
assert len(embedding_lookup_arguments) >= 1, (
'At least one column must be in the model.')
prev_size = 0
sparse_tensors = []
for a in embedding_lookup_arguments:
t = a.input_tensor
values = t.values + prev_size
prev_size += a.vocab_size
sparse_tensors.append(
sparse_tensor_py.SparseTensor(t.indices,
values,
t.shape))
sparse_tensor = sparse_ops.sparse_concat(1, sparse_tensors)
with variable_scope.variable_scope(
None, default_name='linear_weights', values=columns_to_tensors.values()):
variable = contrib_variables.model_variable(
name='weights',
shape=[prev_size, num_outputs],
dtype=dtypes.float32,
initializer=init_ops.zeros_initializer,
trainable=trainable,
collections=weight_collections)
if isinstance(variable, variables.Variable):
variable = [variable]
else:
variable = variable._get_variable_list() # pylint: disable=protected-access
predictions = embedding_ops.safe_embedding_lookup_sparse(
variable,
sparse_tensor,
sparse_weights=None,
combiner='sum',
name='_weights')
return variable, predictions