本文整理匯總了Python中tensorflow.python.ops.sparse_ops.sparse_add方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse_ops.sparse_add方法的具體用法?Python sparse_ops.sparse_add怎麽用?Python sparse_ops.sparse_add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.sparse_ops
的用法示例。
在下文中一共展示了sparse_ops.sparse_add方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _SparseDenseCwiseMulOrDivGrad
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_add [as 別名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
"""Common code for SparseDenseCwise{Mul,Div} gradients."""
x_indices = op.inputs[0]
x_shape = op.inputs[2]
y = op.inputs[3]
y_shape = math_ops.to_int64(array_ops.shape(y))
num_added_dims = array_ops.expand_dims(
array_ops.size(x_shape) - array_ops.size(y_shape), 0)
augmented_y_shape = array_ops.concat(
[array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)
scaling = x_shape // augmented_y_shape
scaled_indices = x_indices // scaling
scaled_indices = array_ops.slice(scaled_indices,
array_ops.concat([[0], num_added_dims], 0),
[-1, -1])
dense_vals = array_ops.gather_nd(y, scaled_indices)
if is_mul:
dx = grad * dense_vals
dy_val = grad * op.inputs[1]
else:
dx = grad / dense_vals
dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
# indices can repeat after scaling, so we can't use sparse_to_dense().
dy = sparse_ops.sparse_add(
array_ops.zeros_like(y),
sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
# (sp_indices, sp_vals, sp_shape, dense)
return (None, dx, None, dy)
示例2: _apply_transform
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_add [as 別名]
def _apply_transform(self, input_tensors, **kwargs):
pair_sparsity = (isinstance(input_tensors[0], sparse_tensor.SparseTensor),
isinstance(input_tensors[1], sparse_tensor.SparseTensor))
if pair_sparsity == (False, False):
result = input_tensors[0] + input_tensors[1]
# note tf.sparse_add accepts the mixed cases,
# so long as at least one input is sparse.
else:
result = sparse_ops.sparse_add(input_tensors[0], input_tensors[1])
# pylint: disable=not-callable
return self.return_type(result)
示例3: _apply_transform
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_add [as 別名]
def _apply_transform(self, input_tensors, **kwargs):
pair_sparsity = (isinstance(input_tensors[0], sparse_tensor.SparseTensor),
isinstance(input_tensors[1], sparse_tensor.SparseTensor))
if pair_sparsity == (False, False):
result = input_tensors[0] - input_tensors[1]
# note tf.sparse_add accepts the mixed cases,
# so long as at least one input is sparse.
elif not pair_sparsity[1]:
result = sparse_ops.sparse_add(input_tensors[0], - input_tensors[1])
else:
result = sparse_ops.sparse_add(input_tensors[0],
_negate_sparse(input_tensors[1]))
# pylint: disable=not-callable
return self.return_type(result)
示例4: _SparseDenseCwiseMulOrDivGrad
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_add [as 別名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
"""Common code for SparseDenseCwise{Mul,Div} gradients."""
x_indices = op.inputs[0]
x_shape = op.inputs[2]
y = op.inputs[3]
y_shape = math_ops.to_int64(array_ops.shape(y))
num_added_dims = array_ops.expand_dims(
array_ops.size(x_shape) - array_ops.size(y_shape), 0)
augmented_y_shape = array_ops.concat(0, [array_ops.ones(num_added_dims,
ops.dtypes.int64),
y_shape])
scaling = x_shape // augmented_y_shape
scaled_indices = x_indices // scaling
scaled_indices = array_ops.slice(scaled_indices,
array_ops.concat(0, [[0], num_added_dims]),
[-1, -1])
dense_vals = array_ops.gather_nd(y, scaled_indices)
if is_mul:
dx = grad * dense_vals
dy_val = grad * op.inputs[1]
else:
dx = grad / dense_vals
dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
# indices can repeat after scaling, so we can't use sparse_to_dense().
dy = sparse_ops.sparse_add(
array_ops.zeros_like(y),
sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
# (sp_indices, sp_vals, sp_shape, dense)
return (None, dx, None, dy)
示例5: calculate_loss
# 需要導入模塊: from tensorflow.python.ops import sparse_ops [as 別名]
# 或者: from tensorflow.python.ops.sparse_ops import sparse_add [as 別名]
def calculate_loss(input_mat, row_factors, col_factors, regularization=None,
w0=1., row_weights=None, col_weights=None):
"""Calculates the loss of a given factorization.
Using a non distributed method, different than the one implemented in the
WALS model. The weight of an observed entry (i, j) (i.e. such that
input_mat[i, j] is non zero) is (w0 + row_weights[i]col_weights[j]).
Args:
input_mat: The input matrix, a SparseTensor of rank 2.
row_factors: The row factors, a dense Tensor of rank 2.
col_factors: The col factors, a dense Tensor of rank 2.
regularization: the regularization coefficient, a scalar.
w0: the weight of unobserved entries. A scalar.
row_weights: A dense tensor of rank 1.
col_weights: A dense tensor of rank 1.
Returns:
The total loss.
"""
wr = (array_ops.expand_dims(row_weights, 1) if row_weights is not None
else constant_op.constant(1.))
wc = (array_ops.expand_dims(col_weights, 0) if col_weights is not None
else constant_op.constant(1.))
reg = (regularization if regularization is not None
else constant_op.constant(0.))
row_indices, col_indices = array_ops.split(input_mat.indices,
axis=1,
num_or_size_splits=2)
gathered_row_factors = array_ops.gather(row_factors, row_indices)
gathered_col_factors = array_ops.gather(col_factors, col_indices)
sp_approx_vals = array_ops.squeeze(math_ops.matmul(
gathered_row_factors, gathered_col_factors, adjoint_b=True))
sp_approx = sparse_tensor.SparseTensor(
indices=input_mat.indices,
values=sp_approx_vals,
dense_shape=input_mat.dense_shape)
sp_approx_sq = math_ops.square(sp_approx)
row_norm = math_ops.reduce_sum(math_ops.square(row_factors))
col_norm = math_ops.reduce_sum(math_ops.square(col_factors))
row_col_norm = math_ops.reduce_sum(math_ops.square(math_ops.matmul(
row_factors, col_factors, transpose_b=True)))
resid = sparse_ops.sparse_add(input_mat, sp_approx * (-1))
resid_sq = math_ops.square(resid)
loss = w0 * (
sparse_ops.sparse_reduce_sum(resid_sq) -
sparse_ops.sparse_reduce_sum(sp_approx_sq)
)
loss += (sparse_ops.sparse_reduce_sum(wr * (resid_sq * wc)) +
w0 * row_col_norm + reg * (row_norm + col_norm))
return loss.eval()