本文整理匯總了Python中tensorflow.python.ops.rnn_cell_impl.assert_like_rnncell方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn_cell_impl.assert_like_rnncell方法的具體用法?Python rnn_cell_impl.assert_like_rnncell怎麽用?Python rnn_cell_impl.assert_like_rnncell使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.rnn_cell_impl
的用法示例。
在下文中一共展示了rnn_cell_impl.assert_like_rnncell方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from tensorflow.python.ops import rnn_cell_impl [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell_impl import assert_like_rnncell [as 別名]
def __init__(self, cell, helper, initial_state, latent_vector, output_layer=None):
"""Initialize BasicDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
latent_vector: A hidden state intended to be concatenated with the
hidden state at every time-step of decoding
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
rnn_cell_impl.assert_like_rnncell("cell must be an RNNCell, received: %s" % type(cell), cell)
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if output_layer is not None and not isinstance(output_layer, layers_base.Layer):
raise TypeError("output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
self._latent_vector = latent_vector
示例2: __init__
# 需要導入模塊: from tensorflow.python.ops import rnn_cell_impl [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell_impl import assert_like_rnncell [as 別名]
def __init__(self, cell, helper, initial_state, output_layer=None):
"""Initialize CustomDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
rnn_cell_impl.assert_like_rnncell(type(cell), cell)
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None
and not isinstance(output_layer, layers_base.Layer)):
raise TypeError(
"output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
示例3: __init__
# 需要導入模塊: from tensorflow.python.ops import rnn_cell_impl [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell_impl import assert_like_rnncell [as 別名]
def __init__(self, cell, helper, initial_state, output_layer=None):
"""Initialize CustomDecoder.
Args:
cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_state: A (possibly nested tuple of...) tensors and TensorArrays.
The initial state of the RNNCell.
output_layer: (Optional) An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Optional layer to apply to the RNN output prior
to storing the result or sampling.
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
# rnn_cell_impl.assert_like_rnncell(type(cell), cell)
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (output_layer is not None
and not isinstance(output_layer, layers_base.Layer)):
raise TypeError(
"output_layer must be a Layer, received: %s" % type(output_layer))
self._cell = cell
self._helper = helper
self._initial_state = initial_state
self._output_layer = output_layer
示例4: __init__
# 需要導入模塊: from tensorflow.python.ops import rnn_cell_impl [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell_impl import assert_like_rnncell [as 別名]
def __init__(
self,
decoder_cell,
helper,
initial_decoder_state,
attention_type,
spec_layer,
stop_token_layer,
prenet=None,
dtype=dtypes.float32,
train=True
):
"""Initialize TacotronDecoder.
Args:
decoder_cell: An `RNNCell` instance.
helper: A `Helper` instance.
initial_decoder_state: A (possibly nested tuple of...) tensors and
TensorArrays. The initial state of the RNNCell.
attention_type: The type of attention used
stop_token_layer: An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Stop token layer to apply to the RNN output to
predict when to stop the decoder
spec_layer: An instance of `tf.layers.Layer`, i.e.,
`tf.layers.Dense`. Output layer to apply to the RNN output to map
the ressult to a spectrogram
prenet: The prenet to apply to inputs
Raises:
TypeError: if `cell`, `helper` or `output_layer` have an incorrect type.
"""
rnn_cell_impl.assert_like_rnncell("cell", decoder_cell)
if not isinstance(helper, helper_py.Helper):
raise TypeError("helper must be a Helper, received: %s" % type(helper))
if (
spec_layer is not None and
not isinstance(spec_layer, layers_base.Layer)
):
raise TypeError(
"spec_layer must be a Layer, received: %s" % type(spec_layer)
)
self._decoder_cell = decoder_cell
self._helper = helper
self._decoder_initial_state = initial_decoder_state
self._spec_layer = spec_layer
self._stop_token_layer = stop_token_layer
self._attention_type = attention_type
self._dtype = dtype
self._prenet = prenet
if train:
self._spec_layer = None
self._stop_token_layer = None