當前位置: 首頁>>代碼示例>>Python>>正文


Python rnn_cell.RNNCell方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.rnn_cell.RNNCell方法的典型用法代碼示例。如果您正苦於以下問題:Python rnn_cell.RNNCell方法的具體用法?Python rnn_cell.RNNCell怎麽用?Python rnn_cell.RNNCell使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.rnn_cell的用法示例。


在下文中一共展示了rnn_cell.RNNCell方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def basic_rnn_seq2seq(
        encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
    """Basic RNN sequence-to-sequence model.

    This model first runs an RNN to encode encoder_inputs into a state vector,
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell type, but don't share parameters.

    Args:
      encoder_inputs: A list of 2D Tensors [batch_size x input_size].
      decoder_inputs: A list of 2D Tensors [batch_size x input_size].
      cell: rnn_cell.RNNCell defining the cell function and size.
      dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
      scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

    Returns:
      A tuple of the form (outputs, state), where:
        outputs: A list of the same length as decoder_inputs of 2D Tensors with
          shape [batch_size x output_size] containing the generated outputs.
        state: The state of each decoder cell in the final time-step.
          It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
        _, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
        return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:atpaino,項目名稱:deep-text-corrector,代碼行數:27,代碼來源:seq2seq.py

示例2: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def basic_rnn_seq2seq(
    encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
  """Basic RNN sequence-to-sequence model.

  This model first runs an RNN to encode encoder_inputs into a state vector,
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell type, but don't share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in the final time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
    _, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
    return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:seq2seq.py

示例3: basic_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def basic_rnn_seq2seq(
        encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
    """Basic RNN sequence-to-sequence model.

    This model first runs an RNN to encode encoder_inputs into a state vector,
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell type, but don't share parameters.

    Args:
        encoder_inputs: A list of 2D Tensors [batch_size x input_size].
        decoder_inputs: A list of 2D Tensors [batch_size x input_size].
        cell: rnn_cell.RNNCell defining the cell function and size.
        dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
        scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".

    Returns:
        A tuple of the form (outputs, state), where:
            outputs: A list of the same length as decoder_inputs of 2D Tensors with
                shape [batch_size x output_size] containing the generated outputs.
            state: The state of each decoder cell in the final time-step.
                It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
        _, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
        return rnn_decoder(decoder_inputs, enc_state, cell) 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:27,代碼來源:seq2seq.py

示例4: state_saving_rnn

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def state_saving_rnn(cell, inputs, state_saver, state_name,
                     sequence_length=None, scope=None):
  """RNN that accepts a state saver for time-truncated RNN calculation.
  Args:
    cell: An instance of RNNCell.
    inputs: A length T list of inputs, each a tensor of shape
      [batch_size, input_size].
    state_saver: A state saver object with methods `state` and `save_state`.
    state_name: The name to use with the state_saver.
    sequence_length: (optional) An int32/int64 vector size [batch_size].
      See the documentation for rnn() for more details about sequence_length.
    scope: VariableScope for the created subgraph; defaults to "RNN".
  Returns:
    A pair (outputs, state) where:
      outputs is a length T list of outputs (one for each input)
      states is the final state
  Raises:
    TypeError: If "cell" is not an instance of RNNCell.
    ValueError: If inputs is None or an empty list.
  """
  initial_state = state_saver.state(state_name)
  (outputs, state) = rnn(cell, inputs, initial_state=initial_state,
                         sequence_length=sequence_length, scope=scope)
  save_state = state_saver.save_state(state_name, state)
  with ops.control_dependencies([save_state]):
    outputs[-1] = array_ops.identity(outputs[-1])

  return (outputs, state) 
開發者ID:uwnlp,項目名稱:qrn,代碼行數:30,代碼來源:rnn.py

示例5: __init__

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def __init__(self, cell, input_keep_prob=1.0, output_keep_prob=1.0,
                 seed=None, is_train=None):
        """Create a cell with added input and/or output dropout.

        Dropout is never used on the state.

        Args:
          cell: an RNNCell, a projection to output_size is added to it.
          input_keep_prob: unit Tensor or float between 0 and 1, input keep
            probability; if it is float and 1, no input dropout will be added.
          output_keep_prob: unit Tensor or float between 0 and 1, output keep
            probability; if it is float and 1, no output dropout will be added.
          seed: (optional) integer, the randomness seed.
          is_train: boolean tensor (often placeholder). If indicated, then when
            is_train is False, dropout is not applied.

        Raises:
          TypeError: if cell is not an RNNCell.
          ValueError: if keep_prob is not between 0 and 1.
        """
        if not isinstance(cell, RNNCell):
            raise TypeError("The parameter cell is not a RNNCell.")
        if (isinstance(input_keep_prob, float) and
                not (input_keep_prob >= 0.0 and input_keep_prob <= 1.0)):
            raise ValueError("Parameter input_keep_prob must be between 0 and 1: %d"
                             % input_keep_prob)
        if (isinstance(output_keep_prob, float) and
                not (output_keep_prob >= 0.0 and output_keep_prob <= 1.0)):
            raise ValueError("Parameter input_keep_prob must be between 0 and 1: %d"
                             % output_keep_prob)
        self._cell = cell
        self._input_keep_prob = input_keep_prob
        self._output_keep_prob = output_keep_prob
        self._seed = seed
        self._is_train = is_train 
開發者ID:uwnlp,項目名稱:qrn,代碼行數:37,代碼來源:rnn_cell.py

示例6: tied_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                     loop_function=None, dtype=dtypes.float32, scope=None):
    """RNN sequence-to-sequence model with tied encoder and decoder parameters.

    This model first runs an RNN to encode encoder_inputs into a state vector, and
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell and share parameters.

    Args:
      encoder_inputs: A list of 2D Tensors [batch_size x input_size].
      decoder_inputs: A list of 2D Tensors [batch_size x input_size].
      cell: rnn_cell.RNNCell defining the cell function and size.
      loop_function: If not None, this function will be applied to i-th output
        in order to generate i+1-th input, and decoder_inputs will be ignored,
        except for the first element ("GO" symbol), see rnn_decoder for details.
      dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
      scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

    Returns:
      A tuple of the form (outputs, state), where:
        outputs: A list of the same length as decoder_inputs of 2D Tensors with
          shape [batch_size x output_size] containing the generated outputs.
        state: The state of each decoder cell in each time-step. This is a list
          with length len(decoder_inputs) -- one item for each time-step.
          It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
        scope = scope or "tied_rnn_seq2seq"
        _, enc_state = rnn.rnn(
            cell, encoder_inputs, dtype=dtype, scope=scope)
        variable_scope.get_variable_scope().reuse_variables()
        return rnn_decoder(decoder_inputs, enc_state, cell,
                           loop_function=loop_function, scope=scope) 
開發者ID:atpaino,項目名稱:deep-text-corrector,代碼行數:35,代碼來源:seq2seq.py

示例7: tied_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                     loop_function=None, dtype=dtypes.float32, scope=None):
  """RNN sequence-to-sequence model with tied encoder and decoder parameters.

  This model first runs an RNN to encode encoder_inputs into a state vector, and
  then runs decoder, initialized with the last encoder state, on decoder_inputs.
  Encoder and decoder use the same RNN cell and share parameters.

  Args:
    encoder_inputs: A list of 2D Tensors [batch_size x input_size].
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    loop_function: If not None, this function will be applied to i-th output
      in order to generate i+1-th input, and decoder_inputs will be ignored,
      except for the first element ("GO" symbol), see rnn_decoder for details.
    dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
    scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing the generated outputs.
      state: The state of each decoder cell in each time-step. This is a list
        with length len(decoder_inputs) -- one item for each time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
  """
  with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
    scope = scope or "tied_rnn_seq2seq"
    _, enc_state = rnn.rnn(
        cell, encoder_inputs, dtype=dtype, scope=scope)
    variable_scope.get_variable_scope().reuse_variables()
    return rnn_decoder(decoder_inputs, enc_state, cell,
                       loop_function=loop_function, scope=scope) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:35,代碼來源:seq2seq.py

示例8: _get_rnn_cell

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def _get_rnn_cell(cell_type, num_units, num_layers):
  """Constructs and return an `RNNCell`.

  Args:
    cell_type: either a string identifying the `RNNCell` type, or a subclass of
      `RNNCell`.
    num_units: the number of units in the `RNNCell`.
    num_layers: the number of layers in the RNN.
  Returns:
    An initialized `RNNCell`.
  Raises:
    ValueError: `cell_type` is an invalid `RNNCell` name.
    TypeError: `cell_type` is not a string or a subclass of `RNNCell`.
  """
  if isinstance(cell_type, str):
    cell_type = _CELL_TYPES.get(cell_type)
    if cell_type is None:
      raise ValueError('The supported cell types are {}; got {}'.format(
          list(_CELL_TYPES.keys()), cell_type))
  if not issubclass(cell_type, rnn_cell.RNNCell):
    raise TypeError(
        'cell_type must be a subclass of RNNCell or one of {}.'.format(
            list(_CELL_TYPES.keys())))
  cell = cell_type(num_units=num_units)
  if num_layers > 1:
    cell = rnn_cell.MultiRNNCell(
        [cell] * num_layers, state_is_tuple=True)
  return cell 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:30,代碼來源:dynamic_rnn_estimator.py

示例9: __init__

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def __init__(self, cell_fn, partition_size=128, partitions=1, layers=2):
        """Create a RNN cell composed sequentially of a number of RNNCells.
        Args:
            cell_fn: reference to RNNCell function to create each partition in each layer.
            partition_size: how many horizontal cells to include in each partition.
            partitions: how many horizontal partitions to include in each layer.
            layers: how many layers to include in the net.
        """
        super(PartitionedMultiRNNCell, self).__init__()

        self._cells = []
        for i in range(layers):
            self._cells.append([cell_fn(partition_size) for _ in range(partitions)])
        self._partitions = partitions 
開發者ID:pender,項目名稱:chatbot-rnn,代碼行數:16,代碼來源:model.py

示例10: tied_rnn_seq2seq

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
                                         loop_function=None, dtype=dtypes.float32, scope=None):
    """RNN sequence-to-sequence model with tied encoder and decoder parameters.

    This model first runs an RNN to encode encoder_inputs into a state vector, and
    then runs decoder, initialized with the last encoder state, on decoder_inputs.
    Encoder and decoder use the same RNN cell and share parameters.

    Args:
        encoder_inputs: A list of 2D Tensors [batch_size x input_size].
        decoder_inputs: A list of 2D Tensors [batch_size x input_size].
        cell: rnn_cell.RNNCell defining the cell function and size.
        loop_function: If not None, this function will be applied to i-th output
            in order to generate i+1-th input, and decoder_inputs will be ignored,
            except for the first element ("GO" symbol), see rnn_decoder for details.
        dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
        scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".

    Returns:
        A tuple of the form (outputs, state), where:
            outputs: A list of the same length as decoder_inputs of 2D Tensors with
                shape [batch_size x output_size] containing the generated outputs.
            state: The state of each decoder cell in each time-step. This is a list
                with length len(decoder_inputs) -- one item for each time-step.
                It is a 2D Tensor of shape [batch_size x cell.state_size].
    """
    with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
        scope = scope or "tied_rnn_seq2seq"
        _, enc_state = rnn.rnn(
                cell, encoder_inputs, dtype=dtype, scope=scope)
        variable_scope.get_variable_scope().reuse_variables()
        return rnn_decoder(decoder_inputs, enc_state, cell,
                                             loop_function=loop_function, scope=scope) 
開發者ID:thu-coai,項目名稱:ecm,代碼行數:35,代碼來源:seq2seq.py

示例11: lm_rnn

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def lm_rnn(x, t, token_embed, layers, seq_len=None, context_vector=None, cell=tf.nn.rnn_cell.BasicLSTMCell):
    """
    Token level LSTM language model that uses a sentence level context vector.

    :param x: (tensor) Input to rnn
    :param t: (tensor) Targets for language model predictions (typically next token in sequence)
    :param token_embed: (tensor) MB X ALPHABET_SIZE.
    :param layers: A list of hidden layer sizes for stacked lstm
    :param seq_len: A 1D tensor of mini-batch size for variable length sequences
    :param context_vector: (tensor) MB X 2*CONTEXT_LSTM_OUTPUT_DIM. Optional context to append to each token embedding
    :param cell: (class) A tensorflow RNNCell sub-class
    :return: (tuple) token_losses (tensor), hidden_states (list of tensors), final_hidden (tensor)
    """

    token_set_size = token_embed.get_shape().as_list()[0]
    cells = [cell(num_units) for num_units in layers]
    cell = tf.nn.rnn_cell.MultiRNNCell(cells, state_is_tuple=True)
    # mb X sentence_length X embedding_size
    x_lookup = tf.nn.embedding_lookup(token_embed, x)

    # List of mb X embedding_size tensors
    input_features = tf.unstack(x_lookup, axis=1)

    # input_features: list max_length of sentence long tensors (mb X embedding_size+context_size)
    if context_vector is not None:
        input_features = [tf.concat([embedding, context_vector], 1) for embedding in input_features]

    # hidden_states: sentence length long list of tensors (mb X final_layer_size)
    # cell_state: data structure that contains the cell state for each hidden layer for a mini-batch (complicated)
    hidden_states, cell_state = tf.nn.static_rnn(cell, input_features,
                                          initial_state=None,
                                          dtype=tf.float32,
                                          sequence_length=seq_len,
                                          scope='language_model')
    # batch_size X sequence_length (see tf_ops for def)
    token_losses = batch_softmax_dist_loss(t, hidden_states, token_set_size)
    final_hidden = cell_state[-1].h
    return token_losses, hidden_states, final_hidden 
開發者ID:pnnl,項目名稱:safekit,代碼行數:40,代碼來源:tf_ops.py

示例12: rnn_decoder

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def rnn_decoder(decoder_inputs, initial_state, cell, loop_function=None,
                scope=None):
    """RNN decoder for the sequence-to-sequence model.

    Args:
      decoder_inputs: A list of 2D Tensors [batch_size x input_size].
      initial_state: 2D Tensor with shape [batch_size x cell.state_size].
      cell: rnn_cell.RNNCell defining the cell function and size.
      loop_function: If not None, this function will be applied to the i-th output
        in order to generate the i+1-st input, and decoder_inputs will be ignored,
        except for the first element ("GO" symbol). This can be used for decoding,
        but also for training to emulate http://arxiv.org/abs/1506.03099.
        Signature -- loop_function(prev, i) = next
          * prev is a 2D Tensor of shape [batch_size x output_size],
          * i is an integer, the step number (when advanced control is needed),
          * next is a 2D Tensor of shape [batch_size x input_size].
      scope: VariableScope for the created subgraph; defaults to "rnn_decoder".

    Returns:
      A tuple of the form (outputs, state), where:
        outputs: A list of the same length as decoder_inputs of 2D Tensors with
          shape [batch_size x output_size] containing generated outputs.
        state: The state of each cell at the final time-step.
          It is a 2D Tensor of shape [batch_size x cell.state_size].
          (Note that in some cases, like basic RNN cell or GRU cell, outputs and
           states can be the same. They are different for LSTM cells though.)
    """
    with variable_scope.variable_scope(scope or "rnn_decoder"):
        state = initial_state
        outputs = []
        prev = None
        for i, inp in enumerate(decoder_inputs):
            if loop_function is not None and prev is not None:
                with variable_scope.variable_scope("loop_function", reuse=True):
                    inp = loop_function(prev, i)
            if i > 0:
                variable_scope.get_variable_scope().reuse_variables()
            output, state = cell(inp, state)
            outputs.append(output)
            if loop_function is not None:
                prev = output
    return outputs, state 
開發者ID:atpaino,項目名稱:deep-text-corrector,代碼行數:44,代碼來源:seq2seq.py

示例13: rnn_decoder

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def rnn_decoder(decoder_inputs, initial_state, cell, loop_function=None,
                scope=None):
  """RNN decoder for the sequence-to-sequence model.

  Args:
    decoder_inputs: A list of 2D Tensors [batch_size x input_size].
    initial_state: 2D Tensor with shape [batch_size x cell.state_size].
    cell: rnn_cell.RNNCell defining the cell function and size.
    loop_function: If not None, this function will be applied to the i-th output
      in order to generate the i+1-st input, and decoder_inputs will be ignored,
      except for the first element ("GO" symbol). This can be used for decoding,
      but also for training to emulate http://arxiv.org/abs/1506.03099.
      Signature -- loop_function(prev, i) = next
        * prev is a 2D Tensor of shape [batch_size x output_size],
        * i is an integer, the step number (when advanced control is needed),
        * next is a 2D Tensor of shape [batch_size x input_size].
    scope: VariableScope for the created subgraph; defaults to "rnn_decoder".

  Returns:
    A tuple of the form (outputs, state), where:
      outputs: A list of the same length as decoder_inputs of 2D Tensors with
        shape [batch_size x output_size] containing generated outputs.
      state: The state of each cell at the final time-step.
        It is a 2D Tensor of shape [batch_size x cell.state_size].
        (Note that in some cases, like basic RNN cell or GRU cell, outputs and
         states can be the same. They are different for LSTM cells though.)
  """
  with variable_scope.variable_scope(scope or "rnn_decoder"):
    state = initial_state
    outputs = []
    prev = None
    for i, inp in enumerate(decoder_inputs):
      if loop_function is not None and prev is not None:
        with variable_scope.variable_scope("loop_function", reuse=True):
          inp = loop_function(prev, i)
      if i > 0:
        variable_scope.get_variable_scope().reuse_variables()
      output, state = cell(inp, state)
      outputs.append(output)
      if loop_function is not None:
        prev = output
  return outputs, state 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:44,代碼來源:seq2seq.py

示例14: __init__

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def __init__(self, cell, attn_length, attn_size=None, attn_vec_size=None,
               input_size=None, state_is_tuple=False):
    """Create a cell with attention.

    Args:
      cell: an RNNCell, an attention is added to it.
      attn_length: integer, the size of an attention window.
      attn_size: integer, the size of an attention vector. Equal to
          cell.output_size by default.
      attn_vec_size: integer, the number of convolutional features calculated
          on attention state and a size of the hidden layer built from
          base cell state. Equal attn_size to by default.
      input_size: integer, the size of a hidden linear layer,
          built from inputs and attention. Derived from the input tensor
          by default.
      state_is_tuple: If True, accepted and returned states are n-tuples, where
        `n = len(cells)`.  By default (False), the states are all
        concatenated along the column axis.

    Raises:
      TypeError: if cell is not an RNNCell.
      ValueError: if cell returns a state tuple but the flag
          `state_is_tuple` is `False` or if attn_length is zero or less.
    """
    if not isinstance(cell, rnn_cell.RNNCell):
      raise TypeError("The parameter cell is not RNNCell.")
    if nest.is_sequence(cell.state_size) and not state_is_tuple:
      raise ValueError("Cell returns tuple of states, but the flag "
                       "state_is_tuple is not set. State size is: %s"
                       % str(cell.state_size))
    if attn_length <= 0:
      raise ValueError("attn_length should be greater than zero, got %s"
                       % str(attn_length))
    if not state_is_tuple:
      logging.warn(
          "%s: Using a concatenated state is slower and will soon be "
          "deprecated.  Use state_is_tuple=True." % self)
    if attn_size is None:
      attn_size = cell.output_size
    if attn_vec_size is None:
      attn_vec_size = attn_size
    self._state_is_tuple = state_is_tuple
    self._cell = cell
    self._attn_vec_size = attn_vec_size
    self._input_size = input_size
    self._attn_size = attn_size
    self._attn_length = attn_length 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:49,代碼來源:rnn_cell.py

示例15: multi_value_rnn_classifier

# 需要導入模塊: from tensorflow.python.ops import rnn_cell [as 別名]
# 或者: from tensorflow.python.ops.rnn_cell import RNNCell [as 別名]
def multi_value_rnn_classifier(num_classes,
                               num_units,
                               sequence_feature_columns,
                               context_feature_columns=None,
                               cell_type='basic_rnn',
                               cell_dtype=dtypes.float32,
                               num_rnn_layers=1,
                               optimizer_type='SGD',
                               learning_rate=0.1,
                               momentum=None,
                               gradient_clipping_norm=10.0,
                               model_dir=None,
                               config=None):
  """Creates a RNN `Estimator` that predicts sequences of labels.

  Args:
    num_classes: the number of classes for categorization.
    num_units: the size of the RNN cells.
    sequence_feature_columns: An iterable containing all the feature columns
      describing sequence features. All items in the set should be instances
      of classes derived from `FeatureColumn`.
    context_feature_columns: An iterable containing all the feature columns
      describing context features i.e. features that apply accross all time
      steps. All items in the set should be instances of classes derived from
      `FeatureColumn`.
    cell_type: subclass of `RNNCell` or one of 'basic_rnn,' 'lstm' or 'gru'.
    cell_dtype: the dtype of the state and output for the given `cell_type`.
    num_rnn_layers: number of RNN layers.
    optimizer_type: the type of optimizer to use. Either a subclass of
      `Optimizer` or a string.
    learning_rate: learning rate.
    momentum: momentum value. Only used if `optimizer_type` is 'Momentum'.
    gradient_clipping_norm: parameter used for gradient clipping. If `None`,
      then no clipping is performed.
    model_dir: directory to use for The directory in which to save and restore
      the model graph, parameters, etc.
    config: A `RunConfig` instance.
  Returns:
    An initialized instance of `_MultiValueRNNEstimator`.
  """
  optimizer = _get_optimizer(optimizer_type, learning_rate, momentum)
  cell = _get_rnn_cell(cell_type, num_units, num_rnn_layers)
  target_column = layers.multi_class_target(n_classes=num_classes)
  return _MultiValueRNNEstimator(cell,
                                 target_column,
                                 optimizer,
                                 sequence_feature_columns,
                                 context_feature_columns,
                                 model_dir,
                                 config,
                                 gradient_clipping_norm,
                                 dtype=cell_dtype) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:54,代碼來源:dynamic_rnn_estimator.py


注:本文中的tensorflow.python.ops.rnn_cell.RNNCell方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。